您好,欢迎来到星星旅游。
搜索
您的当前位置:首页一种基于雷达微多普勒信号分离的人体行为分类方法[发明专利]

一种基于雷达微多普勒信号分离的人体行为分类方法[发明专利]

来源:星星旅游
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 112580486 A(43)申请公布日 2021.03.30

(21)申请号 2020114790.4(22)申请日 2020.12.15

(71)申请人 北京理工大学

地址 100081 北京市海淀区中关村南大街5

号(72)发明人 单涛 陶然 乔幸帅 白霞 赵娟 (74)专利代理机构 北京正阳理工知识产权代理

事务所(普通合伙) 11639

代理人 张利萍(51)Int.Cl.

G06K 9/00(2006.01)G06K 9/62(2006.01)

权利要求书4页 说明书8页 附图5页

()发明名称

一种基于雷达微多普勒信号分离的人体行为分类方法(57)摘要

本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,属于雷达目标探测信号处理领域。本发明实现方法为:通过在雷达人体行为分类系统的预处理环节增加微多普勒信号分离操作,实现肢体运动微多普勒信号增强,利用联合维度优化的卷积主成分分析网络CPCAN从增强后的微多普勒时频图中自主学习高辨识度的特征,将提取的特征输入SVM分类器实现行为分类。分离操作用于防止主成分滤波提取特征和进行数据降维时丢失肢体微多普勒特征细节信息,通过维度优化算法能够准确、快速地确定CPCAN卷积网络层的滤波器数目。本发明具有网络结构简单、运算复杂度低的优点,能够以较少的网络层数实现高识别率的肢体活动受限人体行为分类,降低相似行为之间的误判率。

CN 112580486 ACN 112580486 A

权 利 要 求 书

1/4页

1.一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:包括如下步骤,步骤一、对采集到的原始回波信号r(n)进行信号预处理操作,得到预处理后的回波信号x(n);所述信号预处理包括滤波、去直流、镜像频率抑制;

步骤二、对预处理后的信号x(n)执行微多普勒信号分离操作,利用不同阶次和不同窗长的短时分数傅里叶变换对肢体和躯体的回波进行稀疏表征,建立形态形量分析优化问题,通过求解该问题分离出躯体的多普勒信号xtorso(n)和肢体的微多普勒信号xlimbs(n);

步骤三、利用经步骤二中微多普勒信号分离算法产生的肢体运动时频谱图构建数据集,包括训练数据集Dtrain和测试数据集Dtest;

步骤四、利用两层的联合维度优化的卷积主成分分析网络CPCAN从步骤三构建的微多普勒时频图像数据集中学习特征;其中,在网络的训练阶段,维度优化算法用于确定每层卷积滤波器的数目;

步骤五、利用由两层的联合维度优化的卷积PCA网络学习到的训练数据特征矩阵ftrain训练SVM分类器,将提取的测试样本特征ftest输入到训练好的SVM分类器进行分类,输出分类结果label。

2.如权利要求1所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:还包括步骤六,利用步骤一至步骤五基于雷达微多普勒信号分离的人体行为分类结果,实现更为准确,更为快速的肢体活动受限人体行为的分类,降低相似行为之间的误判率。

3.如权利要求1或2所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤二实现方法为,

步骤2.1:执行短时分数域滤波提取慢变的躯体多普勒信号xtorso(n);步骤2.2:利用CLEAN技术从信号x(n)中消除提取到的信号xtorso(n),降低强分量对弱分量的稀疏表征影响;执行完CLEAN操作后,得到的残留信号为xrem(n);

步骤2.3对信号xrem(n)执行基于短时分数傅里叶变换的形态形量分析MCA优化求解,提取快变的肢体微多普勒信号xlimbs(n)。

4.如权利要求3所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤四实现方法为,

步骤4.1由训练数据集Dtrain训练卷积核,对Dtrain分片去均值化得到D′利用维度优train,化算法二阶差分速降法SODD(second‑order difference descent)计算最佳维度值K,然后

T

抽取D′D′并映射得到卷积核;traintrain的前K个特征向量,

步骤4.2训练数据集Dtrain抽取特征,利用卷积操作得到的卷积核对训练数据集Dtrain做卷积操作,对两层卷积后的输出数据执行分块直方图统计,得到分块特征子矩阵ftrain;

步骤4.3:测试样本Dtest抽取特征,与步骤4.1,步骤4.2特征抽取方法相同,得到微多普勒时频图像数据集Dtest的特征为ftest。

5.如权利要求4所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤2.1实现方法为,

计算预处理后的回波信号x(n)的p1阶短时分数傅里叶变换STFrFT(short‑time fractional Fourier transform)

p1为躯体多普勒信号的合适阶次;设计

2

CN 112580486 A

权 利 要 求 书

2/4页

时频滤波函数H(n,k)如下所示

式中,Th为依据经验选取的阈值;对短时分数域滤波后的信号进行逆短时分数傅里叶变换ISTFrFT得到慢变的躯体多普勒信号xtorso(n),其表达式如下6.如权利要求5所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤2.2实现方法为,

利用谱图估算慢变躯体信号的多普勒频谱

式中,Storso(n,m)是信号xtorso(n)的短时傅里叶变换STFT(short‑time Fourier transforms),Q是STFT的时间维总点数;

将原始信号谱S(n,m)向慢变多普勒谱Υ(m)投影的归一化长度作为慢变多普勒信号对消的增益,其表达式如下

式中,||·||表示欧几里得范数,

M是信号STFT后频

率维的总点数,S(n,m)是预处理后的回波信号x(n)的STFT;在执行CLEAN技术移除强的慢变信号时,需要在对消增益G(n)前乘上一个衰减因子,防止消除强分量的过程中去掉快变的微多普勒信号;

执行完CLEAN操作后,得到的残留信号xrem(n)为xrem(n)=ISTFT[S(n,m)‑βΥ(m)G(n)]    (5)其中ISTFT表示逆短时傅里叶变换。

7.如权利要求6所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤2.3实现方法为,

执行完步骤2.2后,强信号分量的干扰被消除,快变的弱信号成分能够被很好的稀疏表征;此时,具有不同窗长和不同变换阶次的两个STFrFT分别被用来稀疏表征躯体信号的残留成分和肢体的信号;然后,形态形量分析MCA便被用来提取肢体微多普勒信号xlimbs(n);

对于信号xrem(n),xrem=x′x′xlimbs是待提取torso+xlimbs+w,torso是信号xtorso的残留成分,的微多普勒信号,w表示噪声;x′如torso和xlimbs的稀疏表征变换分别为Φ1和Φ2,

式中,c1和c2分别是相应的稀疏表征系数;建立如下的MCA优化问题

式中的稀疏表征变换Φ1和Φ2分别为p1阶的宽窗STFrFT和p2阶的窄窗STFrFT;p1和p2为

‑1

信号x′和x的合适分数傅里叶变换阶次,Ф为ISTFrFT操作;将其代入式(7)重写为torsolimbs

3

CN 112580486 A

权 利 要 求 书

3/4页

通过求解式(8)便能够得到肢体的微多普勒信号

8.如权利要求7所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤4.1实现方法为,

步骤4.1由训练数据集Dtrain训练卷积核,对Dtrain分片去均值化得到D′利用维度优train,化算法二阶差分速降法SODD(second‑order difference descent)计算最佳维度值K,然后

T

由式(9)抽取DtrainD′由式(10)映射得到卷积核;train的前K个特征向量,

输入的训练样本图片有N张,每张图片的大小为m×n,记作

每层滤波器的大小为

k1×k2,所述滤波器的大小即为分块大小;在图像分块采样层,通过不断地滑动k1×k2大小的窗口来采集第i幅图像的局部特征,其中为了保证每个像素点被都采样到,先对图像进行了边缘补零;滑窗操作完成后,每幅输入图像被转换成mn个大小为k1k2的向量化分块,然后对每个分块进行去均值操作;依次对训练数据集中的N个样本执行同样的操作,得到新的数据矩阵D′其列总数目为Nmn,每列代表包含k1k2个元素的向量化分块;利用下式抽取矩train,

T

阵D′D′其中Lj的大小等于二阶差分速降法SODD计算得到traintrain的Lj个主要的特征向量,的最佳维度值K

式中,Vj表示一组正交基;将那些特征向量映射成大小为k1×k2的矩阵,第j层的卷积滤波就能被表示为

式中,

代表将大小为k1k2的一维向量转化为大小为k1×k2的二维矩阵函数;当

所有卷积层的PCA滤波器都得到后,依次利用每一层的PCA滤波器对输入数据进行卷积操

作。

9.如权利要8所述的一种基于雷达微多普勒信号分离的人体行为分类方法,其特征在于:步骤4.2实现方法为,

步骤4.2训练数据集Dtrain抽取特征,利用式(10)得到的卷积核对训练数据集Dtrain做卷积操作,对两层卷积后的输出数据执行分块直方图统计,得到分块特征子矩阵ftrain;

对于两层的卷积PCA网络,第一层输入图像的L1个PCA卷积输出为

式中,*表示两维卷积操作;为了保证输出的结果与

进行卷积前,先对进行边缘补零;

与输入的图像有相同的大小,在

第一层的输出结果作为第二层的输入被执行与前面相同的操作,即分块采样和去均值;第l1个输出分块去均值后的结果为

式中,是去均值后的分块集合;将第二层L1个输入执行同样的操作后串联为一个新

4

CN 112580486 A

权 利 要 求 书

4/4页

的数据矩阵,如

第二层的PCA滤波器为

对第二层的输入

每个有L2输出,每一个

与卷积的结果为

因此,对于每一个输入图像经过两层的卷积PCA滤波后,其输出为

输出数目为L1L2;

对于第二层的L1个输入图像

每个有L2个输出;之后通过二值化将这L2个输出转化成

一个特征图,其每个像素值的取值范围为

式中,B(·)是阶跃函数;式中的加权是为了平衡L2个PCA滤波器的权重;这是由于不同的滤波器对应不同的特征,越大的特征值对应的特征向量所包含的能量越大;然后,L1个特征图中的每一个都被大小为p×q的窗以重叠率α步进分成若干个特征块;紧接着对每个块执行取值范围为量,记作

的直方图统计,将所有特征的直方图统计结果连接成一个特征向

当完成以上所有操作后,输入图像的特征就定义为

5

CN 112580486 A

说 明 书

1/8页

一种基于雷达微多普勒信号分离的人体行为分类方法

技术领域

[0001]本发明涉及一种基于雷达微多普勒信号分离的人体行为分类方法,属于雷达目标探测信号处理领域。

背景技术

[0002]人体的行为监测与步态识别在现代生活中具有重要的价值。经过数十年的研究,人体行为识别技术取得了巨大进步,各种方法被提出,目前常用的人体行为与健康监测手段有:可穿戴式设备(加速度计、三轴陀螺仪)、视频、红外、雷达等。与其它手段相比,雷达监测具有如下几点优势:第一,雷达通过主动发射低功耗、对人体无害的电磁波进行探测,是一种无接触式的监测手段,避免了穿戴式设备对用户带来的不舒适感和易遗落的缺点;第二,雷达发射的电磁波信号传播能力强,探测距离远,且具备一定的穿透能力,特别适合于环境复杂,存在遮挡的室内场所;第三,雷达探测不受光照条件、温度变化等天时天候的影响,能够实现对目标的全天时、全天候监测;第四,雷达探测不直接对监测目标进行成像,具备良好的隐私保护能力,不易泄露私人信息,更加适合于居家敏感区域(卧室、浴室)人体行为的监测。因此,基于雷达微多普勒效应的人体行为分类成为当下的研究热点,且被广泛应用于安保监视、搜索救援、医学监护、居家养老、智能家居、人机交互等多个领域。[0003]在基于雷达微多普勒效应的人体行为识别中,肢体活动受限行为(如单臂摆动走动、双臂不摆动行走等)的分类成为当下研究的焦点,因为活动肢体数目的减少可能与携带有威胁物体的人或受伤人员有关,如持的、依赖拐杖或行走辅助器的老人等。当对肢体活动受限的行为进行分类时,由于不同类别行为之间的运动相似度比较大,由躯体运动引起的多普勒信号提供的特征差异很小,不利于此类行为的识别,而可区分度较高的特征主要来自于由肢体摆动引起的微多普勒信号。然而,由于躯体的回波信号和肢体的信号混叠在一起,且躯体的回波能量远大于肢体的回波能量,与肢体运动相关的精确与精细化的特征不容易被提取,这就导致有无摆臂行为分类错误率大。在当前已开展的众多基于雷达微多普勒的人体行为分类研究结果中,也都显示了有摆臂行走和无摆臂行走在所有行为分类中具有最高的误判率,且误判往往发生在这两类行为之间。因此,肢体活动受限人体行为的分类目前仍是该领域中的技术难题,具有较高的研究价值。发明内容

[0004]本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法的目的是:提供一种基于微多普勒信号分离和联合维度优化的卷积主成分分析网络相结合的人体行为分类方法,能够提升肢体活动受限人体行为的分类准确率,降低相似行为之间的误判率,以实现更为准确,更为快速的行为识别。

[0005]本发明的目的是通过下述技术方案实现的。

[0006]本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,通过在雷达人体行为分类系统的预处理环节增加微多普勒信号分离操作,实现肢体运动微多普勒信号

6

CN 112580486 A

说 明 书

2/8页

的增强,利用联合维度优化的卷积主成分分析网络CPCAN(convolutional principal component analysis network)从增强后的微多普勒时频图中自主学习高辨识度的特征,将提取的特征输入SVM分类器实现行为分类。分离操作用于防止主成分滤波提取特征和进行数据降维时丢失肢体微多普勒特征细节信息,通过维度优化算法能够准确、快速地确定CPCAN卷积网络层的滤波器数目。本发明具有网络结构简单、运算复杂度低的优点,能够以较少的网络层数实现高识别率的肢体活动受限人体行为分类。

[0007]本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,包括如下步骤:

[0008]步骤一、对采集到的原始回波信号r(n)进行信号预处理操作,得到预处理后的回波信号x(n)。所述信号预处理包括滤波、去直流、镜像频率抑制。[0009]步骤二、对预处理后的信号x(n)执行微多普勒信号分离操作,利用不同阶次和不同窗长的短时分数傅里叶变换对肢体和躯体的回波进行稀疏表征,建立形态形量分析优化问题,通过求解该问题分离出躯体的多普勒信号xtorso(n)和肢体的微多普勒信号xlimbs(n)。[0010]步骤2.1:执行短时分数域滤波提取慢变的躯体多普勒信号xtorso(n)。

[0011]计算预处理后的回波信号x(n)的p阶短时分数傅里叶变换STFrFT(short‑time 1fractional Fourier transform)时频滤波函数H(n,k)如下所示

[0012][0013]

p1为躯体多普勒信号的合适阶次。设计

式中,Th为依据经验选取的阈值。对短时分数域滤波后的信号进行逆短时分数傅里叶变换ISTFrFT得到慢变的躯体多普勒信号xtorso(n),其表达式如下

[0014]

步骤2.2:利用CLEAN技术从信号x(n)中消除提取到的信号xtorso(n),降低强分量对

得到的残留信号为xrem(n)。弱分量的稀疏表征影响。执行完CLEAN操作后,

[0016]利用谱图估算慢变躯体信号的多普勒频谱

[0017][0018]

[0015]

式中,Storso(n,m)是信号xtorso(n)的短时傅里叶变换STFT(short‑time Fourier transforms),Q是STFT的时间维总点数。

[0019]将原始信号谱S(n,m)向慢变多普勒谱Υ(m)投影的归一化长度作为慢变多普勒信号对消的增益,其表达式如下

[0020][0021]

式中,||·||表示欧几里得范数,

M是信号STFT

后频率维的总点数,S(n,m)是预处理后的回波信号x(n)的STFT。在执行CLEAN技术移除强的慢变信号时,需要在对消增益G(n)前乘上一个衰减因子,防止消除强分量的过程中去掉快

7

CN 112580486 A

说 明 书

3/8页

变的微多普勒信号。

[0022]执行完CLEAN操作后,得到的残留信号xrem(n)为[0023]x(n)=ISTFT[S(n,m)‑βΥ(m)G(n)]   (5)rem

[0024]其中ISTFT表示逆短时傅里叶变换。[0025]步骤2.3对信号xrem(n)执行基于短时分数傅里叶变换的形态形量分析MCA(morphological component analysis)优化求解,提取快变的肢体微多普勒信号xlimbs(n)。[0026]执行完步骤2.2后,强信号分量的干扰被消除,快变的弱信号成分能够被很好的稀疏表征。此时,具有不同窗长和不同变换阶次的两个STFrFT分别被用来稀疏表征躯体信号的残留成分和肢体的信号。然后,形态形量分析MCA便被用来提取肢体微多普勒信号xlimbs(n)。

[0027]对于信号x(n),xrem=x′x′xlimbs是待remtorso+xlimbs+w,torso是信号xtorso的残留成分,提取的微多普勒信号,w表示噪声。x′如torso和xlimbs的稀疏表征变换分别为Φ1和Φ2,

[0028][0029][0030][0031]

式中,c1和c2分别是相应的稀疏表征系数。建立如下的MCA优化问题

p1和式中的稀疏表征变换Φ1和Φ2分别为p1阶的宽窗STFrFT和p2阶的窄窗STFrFT。

‑1

p2为信号x′和x的合适分数傅里叶变换阶次,Ф为ISTFrFT操作。将其代入式(7)重torsolimbs写为

[0032][0033][0034]

通过求解式(8)便能够得到肢体的微多普勒信号

步骤三、利用经步骤二中微多普勒信号分离算法产生的肢体运动时频谱图构建数

据集,包括训练数据集Dtrain和测试数据集Dtest。[0035]步骤四、利用两层的联合维度优化的卷积主成分分析网络CPCAN从步骤三构建的微多普勒时频图像数据集中学习特征。其中,在网络的训练阶段,维度优化算法用于确定每层卷积滤波器的数目。

[0036]步骤4.1由训练数据集D对Dtrain分片去均值化得到D′利用维train训练卷积核,train,度优化算法二阶差分速降法SODD(second‑order difference descent)计算最佳维度值K,

T

然后由式(9)抽取D′D′由式(10)映射得到卷积核。traintrain的前K个特征向量,

[0037]

输入的训练样本图片有N张,每张图片的大小为m×n,记作每层滤波器的大

小为k1×k2,所述滤波器的大小即为分块大小。在图像分块采样层,通过不断地滑动k1×k2大小的窗口来采集第i幅图像的局部特征,其中为了保证每个像素点被都采样到,先对图像进行了边缘补零。滑窗操作完成后,每幅输入图像被转换成mn个大小为k1k2的向量化分块,然后对每个分块进行去均值操作。依次对训练数据集中的N个样本执行同样的操作,得到新的数据矩阵D′其列总数目为Nmn,每列代表包含k1k2个元素的向量化分块。利用下式抽train,

T

取矩阵D′其中Lj的大小等于二阶差分速降法SODD计算trainD′train的Lj个主要的特征向量,得到的最佳维度值K

8

CN 112580486 A[0038][0039]

说 明 书

4/8页

式中,Vj表示一组正交基。将那些特征向量映射成大小为k1×k2的矩阵,第j层的

卷积滤波就能被表示为

[0040][0041]

式中,

代表将大小为k1k2的一维向量转化为大小为k1×k2的二维矩阵函

数。当所有卷积层的PCA滤波器都得到后,依次利用每一层的PCA滤波器对输入数据进行卷积操作。

[0042]步骤4.2训练数据集D利用式(10)得到的卷积核对训练数据集Dtrain

train抽取特征,

对两层卷积后的输出数据执行分块直方图统计,得到分块特征子矩阵ftrain。做卷积操作,

[0043][0044][0045]

对于两层的卷积PCA网络,第一层输入图像的L1个PCA卷积输出为

式中,*表示两维卷积操作。为了保证输出的结果进行卷积前,先对进行边缘补零。

与输入的图像有相同的大

小,在与

[0046]

第一层的输出结果作为第二层的输入被执行与前面相同的操作,即分块采样和去

均值。第l1个输出分块去均值后的结果为

[0047][0048]

式中,是去均值后的分块集合。将第二层L1个输入执行同样的操作后串联为一

个新的数据矩阵,如

[0049][0050][0051][0052][0053][00][0055][0056][0057]

第二层的PCA滤波器为

对第二层的输入

每个有L2输出,每一个

与卷积的结果为

因此,对于每一个输入图像经过两层的卷积PCA滤波后,其输出为

输出数目为L1L2。

对于第二层的L1个输入图像

每个有L2个输出。之后通过二值化将这L2个输出转

化成一个特征图,其每个像素值的取值范围为

[0058][0059]

式中,B(·)是阶跃函数。式中的加权是为了平衡L2个PCA滤波器的权重。这是由于

9

CN 112580486 A

说 明 书

5/8页

不同的滤波器对应不同的特征,越大的特征值对应的特征向量所包含的能量越大。然后,L1个特征图中的每一个都被大小为p×q的窗以重叠率α步进分成若干个特征块。紧接着对每个块执行取值范围为征向量,记作

[0060]

的直方图统计,将所有特征的直方图统计结果连接成一个特

当完成以上所有操作后,输入图像的特征就定义为

步骤4.3:测试样本Dtest抽取特征,与步骤4.1,步骤4.2特征抽取方法相同,得到微多普勒时频图像数据集Dtest的特征为ftest。[0062]步骤五、利用由两层的联合维度优化的卷积PCA网络学习到的训练数据特征矩阵ftrain训练SVM分类器,将提取的测试样本特征ftest输入到训练好的SVM分类器进行分类,输出分类结果label。

[0063]还包括步骤六:利用步骤一至步骤五基于雷达微多普勒信号分离的人体行为分类结果,实现更为准确,更为快速的肢体活动受限人体行为的分类,降低相似行为之间的误判率。

[00]有益效果:

[0065]1.本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,利用基于短时分数傅里叶变换的微多普勒信号分离方法,能够将微弱的肢体微多普勒信号与强的躯体多普勒信号分离,得到与肢体运动相关更显著的微多普勒时频谱图。

[0066]2.本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,利用网络结构简单、运算复杂度低的联合维度优化的CPCAN网络,能快速提取出具有高辨识度的特征,增加不同类别行为的类间距离,提高肢体活动受限人体行为的分类准确率。[0067]3.本发明公开的一种基于雷达微多普勒信号分离的人体行为分类方法,利用维度优化算法二阶差分速降法SODD,能够准确、快速地确定分类网络每层卷积滤波器的数目,确保数据低维度的同时最大程度保留有效信息,降低CPCAN网络的复杂度。附图说明

[0068]图1是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中的行为分类流程图。[0069]图2是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中的五种不同人体活动行为示意图。[0070]图3是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中的五种不同行为的时频图,其中图3(a)为正常走NW行为的时频谱图,图3(b)为一只手插兜行走WOP行为的时频谱图,图3(c)为两只手插兜行走WTP行为的时频谱图,图3(d)为正常跑NR行为的时频谱图,图3(e)为弯腰捡东西ST行为的时频谱图。[0071]图4是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中的微多普勒分离简要流程图。[0072]图5是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中五种不同行为微多普勒分离后的肢体微多普勒谱图;其中图5(a)为正常走NW行为微多普勒分离后的肢体微多普勒时频谱图,图5(b)为一只手插兜行走WOP行为微多普勒分离后的肢

10

[0061]

CN 112580486 A

说 明 书

6/8页

体微多普勒时频谱图,图5(c)为两只手插兜行走WTP行为微多普勒分离后的肢体微多普勒时频谱图,图5(d)为正常跑NR行为微多普勒分离后的肢体微多普勒时频谱图,图5(e)为弯腰捡东西ST行为微多普勒分离后的肢体微多普勒时频谱图。[0073]图6是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中的从含微多普勒分离的训练数据集学习到的PCA滤波器示意图;其中图6(a)为分类网络第一层卷积PCA滤波器示意,其中图6(b)为分类网络第二层卷积PCA滤波器示意。[0074]图7是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中有微多普勒分离和无微多普勒分离下CPCAN行为分类的混淆矩阵;其中图7(a)为处理不经过微多普勒信号分离产生的数据集的混淆矩阵,图7(b)为处理经过微多普勒信号分离产生的数据集的混淆矩阵。[0075]图8是本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”中实施例中不同分类器性能比较结果。

具体实施方式

[0076]下面将结合附图及具体实例对本发明技术方案进行详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而不起任何限定作用。[0077]实施例1:

[0078]本实施例阐述:将本发明“一种基于雷达微多普勒信号分离的人体行为分类方法”应用于实际采集的人体行为分类的流程。[0079]本实施例中,实验系统是ANCORTEK SDR‑KIT 580B雷达,参数设置为:载波频率5.8GHz,发射波形连续波,发射功率19dBm,扫描时间10ms,采样点数128点,采集时长5s。本实施例实验数据是在开阔的楼道环境中采集的,十个不同身高和不同体重的志愿者参与数据的采集,其中4名女性,6名男性。总共采集五种常见日常行为的数据,包括:(a)正常走NW(Normal Walking),(b)一只手插兜行走WOP(Walking with one hand in pocket),(c)两只手插兜行走WTP(Walking with two hand in pocket),(d)正常跑NR(Normal Running),(e)弯腰捡东西ST(Stoop)。其中,一只手插兜行走和两只手插兜行走的行为是模拟肢体活动受限人体行为中的单臂摆动行走和无摆臂行走,五种行为的示意如图2所示。实验中每一次测试,只有一位测试者以特定的一种行为在距离雷达1.5米处沿着雷达径向方向远离。前四种行为的运动周期相对短,采集时间为5s,最后一种行为的运动周期相对长,采集时间为10s。对采集到的数据利用短时傅里叶变化STFT(short‑time Fourier transform)进行分析,产生的五种行为时频谱图如图3所示。[0080]如图3所示,不同的人体行为具有独特的微多普勒特征。正频率的微多普勒分量表示肢体朝向雷达方向摆动,负频率的微多普勒分量是远离雷达方向摆动造成的。在每个谱图中,能量最强的多普勒成分主要来自躯体部位的反射,而围绕着主多普勒上下周期起伏的微弱成分是由肢体部位的运动引起的。受到强的躯体多普勒信号的影响,肢体的微多普成分不够显著。在这五种行为之间,能够看到三种走的行为与跑和弯腰的时频图有着视觉可见的显著差异,如躯体运动的最大多普勒频率、肢体运动的微多普勒起伏周期等。然而,三种行走行为之间的差异非常小,尤其是躯体运动引起的主多普勒频率很难从视觉上看到区别。而三者之间主要的区别体现在肢体的微多普勒频谱上,直接从所述相似的时频谱中

11

CN 112580486 A

说 明 书

7/8页

提取高精度与高辨识度的特征非常困难。另一方面,由于时频谱的稀疏性,当使用降维技术(如PCA)对其进行降维时,很容易丢失微弱的微多普勒成分,而这些成分恰恰含有能够区分三种行走行为的关键信息。为了增强肢体的微多普勒信号,避免其包含的细节信息丢失,本发明在雷达回波信号的预处理阶段增加了信号分离操作。该操作能够将肢体的回波和躯体回波分离,然后对二者分别进行处理,避免强的躯体成分对弱的肢体成分的影响。分离算法的简要流程如图4所示,包括四个步骤:信号预处理、短时分数域滤波、CLEAN抑制强分量和MCA优化求解。其中,对五种行为的微多普勒信号分离时,躯体成分和肢体成分的稀疏表征变换分别为0.9阶的256点窗长STFrFT和0.1阶的点窗长STFrFT。图5展示了分离后五种行为的肢体微多普勒时频分析结果。相较于图3中的结果,此时五种行为的肢体微多普勒谱更加明显,特征差异更加显著。使得提取与肢体运动相关的微多普勒特征更加容易,也会更有利于肢体活动受限人体行为的分类。

[0081]为了验证本发明所提人体行为分类方法的分类性能和微多普勒分离对分类性能的影响,本次实例构造两个数据集。第一个是利用微多普勒分离算法产生的时频谱图构成的。第二个则没有进行信号分离,直接由原始数据的时频分析谱图构成。所述两个数据集具有相等的样本数量和样本大小。此外,为了确保数据集中有足够数量的样本,还使用了数据扩充。对每一个5s的测量数据,按照2s的窗长,0.5s的步进进行裁剪。对于10s的测量数据(弯腰行为),按照4s的窗长,1s的步进进行裁剪,这样每一个微多普勒数据都能够产生6张谱图。因为测量的总数是(10个志愿者)×(5种活动)×(10次实现)=500,所以得到的数据总数为3000。然后按照5折交叉验证的方式对分类网络CPCAN进行训练和测试。其中,CPCAN的模型参数设置为:PCA卷积层数2,PCA滤波器大小5×5,PCA滤波器数目8、8,局部直方图统计块大小15×15。经过训练后,学习到的PCA滤波器如图6所示,其中的白色条带是为了间隔每个滤波器。整个网络的实施和数据处理是在MATLAB 2018a平台上。[0082]经过5次交叉验证后,本发明所提分类方法对五种行为的平均分类正确率为95%。然后,又利用相同模型参数的CPCAN对没有进行微多普勒分离操作得到的数据集进行处理,得到的平均分类正确率为84.83%。两者相比较,能看到微多普勒分离的使用为行为分类网络带来了10.17%的分类性能提升,的确有助于肢体活动受限行为的分类。图8给出了CPCAN分类系统处理不同数据集的混淆矩阵,其中图7(a)为处理不经过微多普勒信号分离产生的数据集的混淆矩阵,图7(b)为处理经过微多普勒信号分离产生的数据集的混淆矩阵。从图中可见,无论是在有信号分离还是无信号分离情况下,最容易发生混淆的都是三种行走行为(NW,WOP,WTP),尤其是单臂摆动走(WOP)和无摆臂走(WTP)之间。这与预料中的一样,因为人在走动过程中,当约束一只手臂时,也会潜意识地或减少另一只手臂的摆动。此外,还能够看到执行分离前的三者之间的交叉误差要明显大于执行微多普勒分离后的,尤其是行为WOP具有最低的准确率71.67%,而跑和弯腰行为的准确率没有太大的变化,该因素也是影响微多普勒分离前分类系统整体平均准确率低的主要原因。而三种行走行为间交叉误差大的原因则是,在进行微多普勒信号分离前,三者的时频谱中肢体微多普勒特征比较微弱,差异较小,能用于区分这三种行走行为的特征提取困难。结果表明,经过微多普勒分离处理后,肢体的微多普勒谱更加显著,有利于行为分类准确率的提升。[0083]然后,将本发明与两种流行的深度卷积神经网络模型,即AlexNet和VGG‑16进行分类性能比较。同样,AlexNet和VGG‑16也分别处理具有和不具有微多普勒信号分离操作的两

12

CN 112580486 A

说 明 书

8/8页

个数据集。实验结果如图8所示,从中能够看出,本发明的准确率达到95%,为三者中最好的,因为本发明与其它深度学习方法相比,包含微多普勒信号分离操作。然后,将微多普勒信号分离与AlexNet和VGG‑16相结合后,即处理微多普勒分离后的数据集,也能获得较好的分类性能,提高约7%以上。说明微多普勒分离确实有助于人体行为分类,特别是对于肢体活动受限行为的分类。此外,在图8中还能观察到,即使所用CPCAN的卷积层数只有两层,分离后它的分类准确率与AlexNet的相近,略低于VGG‑16,但所需的时间远少于AlexNet和VGG‑16,有利于人体行为分类系统的实时处理。[0084]以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

13

CN 112580486 A

说 明 书 附 图

1/5页

图1

图2

14

CN 112580486 A

说 明 书 附 图

2/5页

图3

图4

15

CN 112580486 A

说 明 书 附 图

3/5页

图5

16

CN 112580486 A

说 明 书 附 图

4/5页

图6

17

CN 112580486 A

说 明 书 附 图

5/5页

图7

图8

18

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务