G.Karatheodoris,A.PinzulandA.Stern
arXiv:hep-th/0211033v5 1 Feb 2003DepartmentofPhysics,UniversityofAlabama,
Tuscaloosa,Alabama387,USA
ABSTRACT
WearguethattheBorn-InfeldsolutionontheD9−braneisunstableunderinclusionofderivativecorrectionstoBorn-Infeldtheorycomingfromstringtheory.Morespecifically,wefindnoelectrostaticsolutionstothefirstordercorrectedBorn-InfeldtheoryontheD9−branewhichgiveafinitevaluefortheLagrangian.
1
TheBorn-Infeld(BI)nonlineardescriptionofelectrodynamicsisofcurrentinterestduetoitsroleasaneffectiveactionforDp-branes.[1],[2]Oneofitsmainfeaturesistheexistenceofamaximumallowedvalue|E|maxforelectrostaticfields.∗Inthe30′s,BornandInfeldpromotedthistheorybecauseithasasphericallysymmetricsolutionwithfiniteclassicalself-energy.[3]ItagreeswiththeCoulumbsolutionatlargedistances,buthasafinitelimitfortheradialcomponentoftheelectricfieldattheorigin.Thislimitisjust|E|max.Asaresult,thevectorfieldissingularattheorigin.Equivalently,thesolutionisthusdefinedonaEuclideanmanifoldwithonepoint(correspondingtothe‘source’)removed,despitethefactthattheenergydensityiswellbehavedatthepoint.Thetheorycontainsonedimensionfulparameter(namely,|E|max),whichwasdeterminedbyBornandInfeldafterfixingtheclassicalself-energywiththeelectronmass.FortheDp-branethedimensionfulparameteristhestringtension,andsoanyBI-typesolution(orBIon[4])appearingthereshouldcorrespondtoachargedobjectwithcharacteristicmassatthestringtension.ThefactthatenergeticsadmitsvectorfieldsthatarenoteverywheredefinedindicatesthatBItheorycannotbeacompletedescription.[5]Moreover,instringtheory,theBIeffectiveactionisonlyvalidforslowlyvaryingfields,i.e.itisthelowestorderterminthederivativeexpansionforthefulleffectiveDp-braneaction.Sincederivativesofthefieldsarenot‘small’intheinterioroftheBIsolution,thevalidityofsuchasolutioninstringtheorycanbequestioned.ItisthereforeofinteresttoknowwhetherornotanaloguesoftheBIsolutionssurviveforthefulleffectiveDp-braneaction.AderivativeexpansionhasbeenrecentlycarriedouttoobtainlowestorderstringcorrectionstotheBIactionforthespace-fillingD9-brane.[6],[7]Withtherestrictiontoelectrostaticconfigurations,wefindthattheBIsolutionontheD9-braneisunstablewiththeinclusionofsuchcorrections,indicatingthatsuchsingularfieldconfigurationsmaynotfollowfromthefulleffectiveaction.Thereasonisbasicallyduetotheresultthatderivativecorrectionsmakeitdifficultfortheelectrostaticfieldtoattainitsmaximumvalue|E|max.HereweonlyallowforfieldconfigurationsthatleadtoafinitevaluefortheLagrangian.†Thisisareasonablerequirementfromthepointofviewofthepathintegral,whereoneexpectstorecovertheclassicalsolutionsintheWKBapproximation.Moreover,wefindnonontrivialelectrostaticsolutionsontheD9-braneD9-braneassociatedwithafiniteLagrangian.
Thesituationhereisincontrasttoskyrmionphysics,wheretherearenonontrivialsolutionstothezerothordereffectiveactionforQCD.Higherorderderivativecorrections,liketheSkyrmeterm,arenecessarytostabilizetheskyrmion.Ontheotherhand,BIonsappearatlowestorder,butbecomeunstableuponincludingthenextorderelectrostaticcorrections.Thereremainsthepossibility,however,ofstabilizingtheBIonwiththeinclusionofotherdegreesoffreedom.Forexample,ifweallowformagneticeffectsonemightfindthatthehigherordercorrectionsgiveamagneticdipolemomenttotheBIon.Anotherpossibilitywhichisofcurrentinterest,concernsBI-typesolutionsthatappearafterdimensionalreduction.Inthis
case,theBIactionisreplacedbytheDirac-Born-Infeldaction(DBI),containingdegreesoffreedomassociatedwiththetransversemodesofthebrane.ClassicalsolutionstotheDBIactionwerefoundin[4],[8],[9],andtheyrepresentfundamentalstringsattachedtobranes.‡Itisofinteresttoexaminehowsuchsolutionsareaffectedbyderivativecorrections[6].(Onesetofsolutions(theBPSsolutions)werefoundtobeunaffectedtoallorders[10].)Wehopetoaddresstheseissuesinfutureworks.
WebeginwithareviewoftheBorn-Infeldelectrostatics.TheBIactionisexpressedintermsofthedeterminantofthematrixwithelements
hµν=ηµν+(2πα′)Fµν,
(1)
whereFµν=∂µAν−∂νAµisthefieldstrengthandoneassumestheflatmetricηµν.OntheD9−braneitisgivenby
SBI=
(0)
1
(0)
−det[hµν],(2)
wheredis9.IntheabsenceofmagneticfieldsLBIsimplifiesto
(0)
LBI=1−
.(5)rd−1
TheintegrationconstantQisthecharge.(5)approachestheCoulombsolutionwhenr→∞.Whenr→0,θ→π
AsnosuchinterpretationispossiblefortheBIonontheD9-brane,itisconvenientthatwefindittobeunstable.
‡
3
=ΠiF0i+
−det[hµν](hi0−h0i),
(7)
µ
arethemomentaconjugatetoAiandhµνhνρ=δρ.Asusual,themomentumconjugatetoA0isconstrainedtobezero.Intheabsenceofmagneticfields,(7)reducesto
π=
Π
1+π2−1−(2πα′)∂iπiA0
=
1i−1−(2πα′)∂iπA0,
1−f
2whereweintegratedbyparts.ThecoefficientofA0givestheGausslawconstraint.remainingtermscanbeusedtoidentifytheself-energyoftheBIsolution
d−1
E(0)BI
=
Ω(4π2α′)5gs
d10
x1−
4
∆
,
∆=hµνhρσhαβhγδ(SνραβSσµγδ−2SβγνρSδασµ),
whereκ=
(2πα′)2
(9)
The
(12)
undersuchdiffeos.§WeavoidthiscomplicationandworkinCartesiancoordinatesxi.For
((electrostaticfieldsEx)=fx)/(2πα′),
Sijk0=−Sij0k=∂i∂jfk+
21−f
fℓ
(∂ifk∂jfℓ−∂ifℓ∂jfk)
(13)
Thenexploitingthesymmetryoftheindiceswecanwrite
−1
2
SijkℓSijkℓ+
1
tanθ
H′2+
r4d−1
cos4θ
cos3θ
d−1H′2+
κ
d−1′rH
(Q−rd−1tanθ)cos2θ=2
−d−1
cos3θ
2
WenotethatbyrescalingrandQwecansetκequaltounity.Also(17)isinvariantunderQ→−Qandθ(r)→−θ(r),andthisgivesaprescriptionformappinganypossiblecharged
rd−5sinθ126−53d+85r2H2+4cos2θ(5+d−3r2H2)+cos4θ(d−2−r2H2)(17)
solutiontotheanti-solution.Thelefthandsideof(17)vanishesfortheoriginalBIsolution(5),whiletherighthandsiderepresentsderivativecorrections.Substituting(5)intothelefthandsidegivesavanishinglysmallcorrectionasr→∞,butitissingularforr→0.TheBIsolutionthereforecannotbetrustedneartheorigin.
Duetothepresenceofhighordertimederivativesinthecorrectiontermsintheaction(12),thecomputationoftheHamiltonianforthesystem,andconsequentlythecorrectiontotheelectrostaticenergy(10),isproblematic.Forthisreasonweonlyrequiresolutionsto(17)tobeassociatedwithafinitevaluefortheLagrangian(15)insteadoftheenergy.SincetheBI(actually,Coulumb)solutionisvalidatlarger,
θ(r)→
Q
(19)
whereH′→−(logǫ)′′andweagainsetκequaltoone.Takingd=9andQ>0,onehasthefollowingsolutionneartheorigin
732r45
,asr→0(20)ǫ(r)→
6
ǫ3
′′
+3rd−1H′2−(d−1)8(rd−3H)′+rd−5[13−7d+12r2H2],
ItiseasytocheckthatitgivesafinitecontributiontotheLagrangianasr→0.(Forthisoneonlyneedsthatǫ(r)goestozeroslowerthanr5/3.)Ontheotherhand,afternumericallyintegratingthissolutionstartingfromsomeinitialvaluer0toincreasingvaluesofrwefindthatforanyvalueofQ,ǫgoesquicklytoπ/2or−π/2,andsotheLagrangiandensityispoorlybehavedforlargevaluesofr.BelowweplottheresultsforQ=1:
1200
1.5705
0.000050.00010.000150.00021.56951.5691.5685
1000800600400200
0.000050.00010.000150.0002fig.3θ(r)vs.r
fig.4r8(LBI+LBI)vs.r
(0)(0)
Fromfig.3,θ′>0totherightoftheminimum,andsonomatchwithfig.1ispossiblethere.Totheleftoftheminimum,θ′tendsto−∞asr→0accordingto(20),whilefromfig.1itappearstovanishinthelimit.Tomakemattersworse,thegraphsweobtainforθneartheoriginarehighlysensitivetotheinitialvaluer0oftheintegration,andthispersistsforallvaluesofQ.Wehavecheckedthatthisisnotduetotheneglectofhigherordertermsin(20).Sonotonlyistherenoagreementbetweenthetwonumericalintegrationprocedures,thevalidityofthesolutionneartheoriginisquestionable.Wearethusunabletofindanysphericallysymmetricchargedsolutionsto(17)consistentwiththerequirementofafiniteLagrangian.
WealsofindnoaxiallysymmetricchargedsolutionswithfiniteLagrangiandensityevery-where.Again,theycorrespondtod<9,andatzerothorderwerecharacterizedbya(9−d)
issingular.Using(18)wecanonceagainnumerically-dimensionalEuclideansurfacewheref
integratetosmallvaluesofr.Theconclusionsarethesameasford=9.ForQ>0,θ(r)tendstothelimitofπ/2asr→0,andthecorrespondingradialLagrangiandensitydivergesasr→0(fasterthan1/r).ForQ>0andd≥6,thesolutionto(19)neartheoriginhastheformd−5
5Cr
ǫ(r)→,asr→0,(21)whereC=20008,33324,51836ford=6,7,8,respectively.Aswiththecased=9,itis
consistentwiththerequirementofafiniteLagrangianforsmallr,buttheLagrangiandensitydivergesafternumericallyintegratingtoincreasinglarger,andtheproblemofthesensitivitytotheinitialvaluer0persists.Soagainwefindnoagreementbetweenthetwonumericalintegrationprocedures.Ford<6,wefindnosolutionsto(19)neartheoriginsatisfyingtherequirementofafiniteLagrangian.
7
Abovewefoundnegativeresultsforallconfigurationsassociatedwithsomenonzerovalueforthecharge.AlthoughtherearenoQ=0solitonsolutionsofthezerothorderBorn-Infeldsystem,thisneednotbeaprioritrueathigherorders.Inthiscase,θ(r)foranysphericallysymmetricsolutionwouldnotfalloffasapowerasr→∞,butrather
−αr
e
θ(r)→Acosαr+Bsinαr
[8]C.G.CallanandJ.M.Maldacena,Nucl.Phys.B513,198(1998).[9]P.S.Howe,N.D.LambertandP.C.West,Nucl.Phys.B515,203(1998).[10]L.Thorlacius,Phys.Rev.Lett.80,1588(1998).
9
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务