MartijnHendriks1∗,BarendvandenNieuwelaar2†,FritsVaandrager1∗
1NijmeegsInstituutvoorInformaticaenInformatiekunde,
UniversityofNijmegen,TheNetherlands
martijnh@cs.kun.nl,fvaan@cs.kun.nl
2DepartmentofMechanicalEngineering,
EindhovenUniversityofTechnology,TheNetherlands
N.J.M.v.d.Nieuwelaar@tue.nl
Abstract
Optimizationoftimingbehaviourofmanufacturingsystemscanbere-gardedasaschedulingprobleminwhichtasksmodelthevariouspro-ductionprocesses.Typicalformanymanufacturingsystemsisthattasksorcollectionsoftaskscanbeassociatedwithmanufacturingen-tities,whichcanbestructuredhierarchically.Executionofproductionprocessesforseveralinstancesoftheseentitiesresultsinnestedfiniterepetitions,whichblowsupthesizeofthetaskgraphthatisneededforthespecificationoftheschedulingproblem,and,inanevenworseway,thenumberofpossibleschedules.WepresentasubclassofUMLactivitydiagramswhichisgenericforthenumberofrepetitions,andthereforesuitableforthecompactspecificationoftaskgraphsforthesemanufacturingsystems.Theapproachtoreducethecomplexityoftheschedulingproblemexploitstherepetitivepatternsextractedfromtheactivitydiagrams.Itreducestheoriginalproblemtoaproblemcontain-ingsomeminimalnumberofidenticalrepetitions,andafterschedulingofthismuchsmallerproblemthescheduleisexpandedtotheoriginalsize.Wedemonstrateourtechniqueonareal-lifeexamplefromthesemiconductorindustry.
Keywords:Scheduling,manufacturingsystems,UMLactivitydiagrams,finiterepet-itivebehaviour.
∗Supported†Part-time
bytheEuropeanCommunityProjectIST-2001-35304(AMETIST).softwarearchitectatASML.
1.Introduction
Schedulinginmanufacturingsystemshasreceivedmuchattentionintheliterature.Thebasicschedulingissue,theassignmentofmutuallyexclusiveresourcestotasks,isaddressedintheJobShopSchedulingliterature[13,19].Inaddition,insomecasesalsotheorderoftasksforasingleresourceinfluencestemporalbehaviourofthemanufacturingsystem[8],analogoustotheTravelingSalesmanProblem[10].BothoftheseproblemsareNPhardtosolve.Combinationoftheseoptimizationproblemsandthesizeanddiversityofpracticalmanufacturingcasesmakesschedulingofmanufacturingsystemsaninterestingchallenge.In[12],anoverviewofspecificschedulingissuesplayingaroleinman-ufacturingsystemscanbefound.Oneofthemisthefactthatthesamemanufacturingprocesseshavetobeexecutedrepetitivelyforseveralin-stancesofmanufacturingentities.Often,therelationsbetweentheman-ufacturingentitiesarehierarchical.Forexample,consideranassemblysystem.Afinalproductinsuchasystem,calledanassembly,cancon-sistofsub-assemblies,whichinturncanconsistofsub-sub-assemblies.Productsaremanufacturedinbatchesandmanufacturingordersconsistofmultiplebatches.Therelationshipsbetweenthemanufacturingenti-tiesofthissystemcanbeexpressedbytheEntity-RelationshipDiagram(ERD)ofFigure1.
Entity A
1
n
Entity B
1
n
Entity C
1
n
Entity D
1
n
Entity E
Figure1:Hierarchicalstructureofmanufacturingentities.
Fortheassemblysystemexample,entitiesAthroughEcanbeasso-ciatedwithorder,batch,product,sub-assembly,andsub-sub-assembly,respectively.Anotherexamplewithhierarchicalmanufacturingentityrelationsconcernspackaging.Forinstance,amanufacturingorderofabeerbreweryconsistsofseveralpallets,containingseveralcrateswithseveralbottlesofbeer.Athirdexampleconcernsawaferscannerman-ufacturingsystemfromthesemiconductorindustry[1].Wafersarealsoproducedinbatches(lots).Awaferscannerprojectsamaskonawafer,usinglight.Eventually,theprojectedmasksresultinIntegratedCircuits(ICs).Ononewafer,multipleICsandtypesofICsaremanufactured.MultipletypesofICsinvolvemultiplemasks,andmultiplemasksareplacedonareticle.ThemanufacturingentitiescanbemodeledasinFigure1,whereentityAthroughEcanbeassociatedwithlot,wafer,reticle,mask,andIC,respectively.Asthisexampleconcernsnotonlyentitiesthatendupinthefinalproductbutalsootherentitiesrequired
formanufacturing,thisexampleisconsideredintheremainderofthispaper.
Repetitiveexecutionofmanufacturingprocessesforseveralinstancesofmanufacturingentitiesleadstofiniterepetitivepatternsinmanufac-turingschedules.Inpractice,executionofthefirstfewinstancesandlastfewinstancesofamanufacturingentitydifferslightlyfromtherest.Thisisalargedifferencewithunlimitedrepetitivebehaviourofmanufac-turingsystems,whichhasreceivedmuchattentioninliterature[14,20].Furthermore,thehierarchicalstructureofthemanufacturingentitiesleadstopatternsonseveralgranularitylevels.Thepurposeofthispa-peristodescribeanapproachtoidentifyexactlyidenticalrepetitiveschedulingpatternsinordertoreducethecomplexityoftheschedul-ingproblem.Withthisinformation,a(sub-)optimizedmanufacturingschedulecanbecreatedbyconcatenationoftheoptimizedsub-schedulesofthepatterns.Withoutthisinformation,combinationofthepossiblesub-schedulesfortheserecurrentpatternsblowsupthenumberofpos-sibleoverallschedulesdramatically.
Concretely,ourcontributionistwofold.First,weintroduceasubclassofUMLactivitydiagrams[16,17]forthecompactspecificationoftaskgraphswhichmaycontainfiniterepetitivebehaviour.Essentially,thesametypeofactivitydiagramsisusedwithinASMLtospecifyschedul-ingproblems.Thekeytechnicaldifficultythatwefacewhengivingaformaldefinitionofthissubclassofactivitydiagramsistoruleoutcertainundesiredraceconditions.Thesecondpartofourcontributionconsistsofamethodforfindingrepetitivesubgraphsinthesetaskgraphsusingtheactivitydiagrams.Thisinformationcanbeexploitedtospeeduptheschedulingprocessinadramaticway.Weshowthisbyapplyingourtechniquetoareal-lifeexamplefromthesemiconductorindustry.Relatedwork.In[15]UMLactivitydiagramsthatspecifyschedulingproblemsaretranslatedtotimedautomatamodels.Schedulabilityoftheactivitydiagramistranslatedtoareachabilityproperty,whichischeckedbytheUppaalmodelchecker[9].Ifthepropertyissatisfied(theactivitydiagramisschedulable),thenatracethatprovesthepropertyisequivalenttoaschedulefortheactivitydiagram.Althoughtheexplosionoftheschedulingeffortduetohierarchical,finiterepetitionsisrecognizedin[15],nosolutionisprovided.
Relatedworkw.r.t.thesemanticsofUMLactivitydiagramsincludestheverificationofworkflowmodelsspecifiedbythesediagrams[4].Incontrasttoourwork,thesemanticsof[4]associatesatransitionsystemtoeachactivitydiagram,usingsomeformof“tokengame”.Thetran-sitionsystemsemanticsof[4]canserveasabasisforverificationusingmodelcheckingbut,unlikeourtaskgraph(partialorder)semantics,it
cannotbeusedasastartingpointforsolvingschedulingproblems.An-othersemanticsforUMLactivitydiagramsisprovidedby[6],usingastraightforwardtranslationtoPetrinets.However,thissemanticsdoesnotaddresstheevaluationofconditionals,andasaresultitisunclearhowtoextractataskgraphinordertoaddressschedulingissues.
Relatedworkw.r.t.thesecondpartofourcontributionincludestheCabinssystem[11].Itis“anintegratedframeworkofiterativerevisionintegratedwithknowledgeacquisitionandlearningforoptimizationinill-structureddomains”(quotedfromtheCabinsweb-site).Inthisap-proachknowledgeabouttaskpatternsthatalreadyhavebeenscheduledbeforeisusedtoimproveschedules.Thereare,however,numerousdif-ferencebetweentheCabinsapproachandours.Forinstance,wedonotuselearning,andCabinssupportsrun-timeschedulingwhereasourapproachisstatic.
Alsorelatedisthecomputer-aideddesignofvideoprocessingalgo-rithmsof[18].Mostvideoalgorithmsconsistofrepetitiveexecutionsofoperationsondata,whichcanbedescribedbyusingnestedloopsandmultidimensionalarrays.Theschedulingprobleminthiscaseistominimizeaparticularcostfunctionwhilesatisfyingcertaintiming,resourceandprecedenceconstraints.However,apparentlynoexploita-tionofequalityofloopinstancestakesplace.Ourworkalsorelatestowideningandaccelerationtechniques(e.g.,[3]and[2,7]),whichtrytoacceleratethefixed-pointcomputationofreachablesets.Atleasttheapproachesinthelattertwousestaticanalysisofthecontrolgraph(thesyntax)todetectinterestingcycles,ofwhichtheresultofiteratedexecutioncanbecomputedbyonesinglemeta-transition.Thesemeta-transitionsarethenaddedtothesystemandfavoredbythestatespaceexplorationalgorithm,resultinginfasterexplorationofthestatespace.Ourtechniquealsoexploitscyclicstructures,yetnotinthesyntax,butinthesemanticsoftheactivitydiagrams,toderivefuturebehaviour.Whenthisisdoneduringtheactualscheduling,itcanberegardedasaformofacceleration.Wearenotawareofanyotherrelatedwork.
Outline.Thepaperisstructuredasfollows.InSection2,activitygraphs–asubclassofUMLactivitydiagrams–areintroduced,whicharesuitedtomodelfiniterepetitivebehaviourofmanufacturingsys-tems.Subsequently,weformallydefinethesyntaxofactivitygraphs,andwedefinethesemanticsbyassociationoftaskgraphs.Section3discussesanapproachtorecognizerepetitivepatternsintaskgraphsus-ingtheactivitydiagramitisassociatedwith.Moreover,weshowhowthisinformationcanbeusedinareal-lifeindustrialexample.Finally,concludingremarksarepresentedinSection4.
2.ActivityGraphs
Taskgraphsarebasicobjectsforthespecificationofschedulingprob-lems.Theyarelesssuitedforthespecificationofmanufacturingsystemswithfiniterepetitivebehaviour.Considerfigure1andassumethatweneedtoproduce5unitsofeachentitytobeabletoproduceitsparententity.Ataskgraphdescribingsuchaproblemthenconsistsof55subgraphsfortheproductionoftheneededquantityofentityE.Inotherwords,thetaskgraphmaybeexponentiallylarge(orevenworse!)inthenumberofdifferententities,whichmakesspecificationusingataskgraphandschedulinginconvenient.
InSection2.1weintroduceasubclassofUMLactivitydiagramsforthecompactspecificationoftaskgraphswhichmaycontainlim-itedrepetitivebehaviour[16,17].Section2.2associatestaskgraphswithactivitydiagramsusingtheso-calledrelevancymapping,whichisneededtoexcludethepossibilitythatanactivitydiagramisambiguous(i.e.canbeassociatedwithmultipletaskgraphs)duetoraceconditions.
2.1FormalDefinitionofActivityGraphs
Activitygraphsaredirectedgraphswithdifferenttypesofvertices(a.k.a.nodes),whichcorrespondtothetypesinUMLactivitydiagrams,andwithanannotationoftheconditionalnodes,whichisusedtospecifyfiniterepetitionsofsubgraphs.Theactualschedulingoftaskgraphsisnotconsideredinthepresentpaper.Therefore,weomitthedurationsandresourcerequirementsoftheactivities/tasksinalldefinitions.
Definition1(Activitygraph)Anactivitygraphisdefinedbyatuple(N,n0,,c),where
Nisafinitesetofnodes,partitionedintothesetsC,F,J,A,MandEwhicharesetsofconditional,fork,join,activity,mergeandexitnodesrespectively,n0∈F∪A∪Mistheinitialnode,
⊆N×Nisthesetofprecedenceedgessuchthat:
–exitnodeshavenosuccessors,forknodeshaveatleasttwosuccessors,conditionalnodeshavetwosuccessors,andothernodeshaveonesuccessor,and
–joinandmergenodeshaveatleastonepredecessor,andothernodeshaveonepredecessor.Theinitialnodeisanexceptionsinceitmayhavenopredecessors.Wewritevvfor(v,v)∈.
c:C→N×(N\\{0})×N×2Cistheconditionalfunctionsuchthat:ifc(v)=(v,n,v,R),thenvvandvv.Wecallvvthetrueedgeofv,ntheupperboundofvdenotedbyub(v),vvthefalseedgeofv,andRtheresetsetofv.Wecanexplaintheconditionalfunctioncasfollows.Assumethatc(v)=(v,n,v,R).Thismeansthatinitiallythetrueedgeofvisenabledandthefalseedgeofvisdisabled.Afternexecutionsofthetrueedgeitbecomesdisabledandthefalseedgebecomesenabled.Theenablednesscanberesettotheinitialsituationbytakingafalseedgeofaconditionalwsuchthatvisintheresetsetofw.
WeusetheregularUMLconventionsforthegraphicalrepresentationofactivitydiagramstorepresentouractivitygraphs[16].Summariz-ing,forksandjoinsarerepresentedbybars,mergesbydiamondshapeswithoneoutgoingarrow,activitiesbyboxeswithanameinside,exitsbycircledblackdots,andconditionalsbydiamondswithtwoguardedoutgoingedges.Theinitialnodeisprecededbyablackdot.Inourrepresentationweusetheconditionalsas“counters”tokeeptrackofthenumberofexecutionsofthetrueedgeoftheconditional.
A1[c1>=2][c1<2][c2<2][c2>=2]A2A3Figure2:Asmallactivitygraph.
Forinstance,Figure2depictsasmallactivitygraphthathasthreeactivitiesandusestwoconditionals,c1andc2.Thereisonecycle,con-trolledbytheconditionals,thatisexecutedtwiceandinwhichactivitiesA2andA3canruninparallel.ActivityA1mustberunonce,andthiscanhappeninparallelwiththecycle.
2.2FromActivityGraphstoTaskGraphs
Wedefinethesemanticsofanactivitygraphbyunfoldingit(whichmeansresolvingtheconditionalchoices)toobtainallreachableinstancesofnodesandtheirprecedencerelation.Forinstance,Figure3depictstheintendedunfoldingoftheactivitygraphinFigure2.
A2A3A2A3A1Figure3:TheintendedunfoldingoftheactivitygraphofFigure2.
Althoughtheunfoldingoperationisintuitivelyquiteclear,adifficultyconcerningraceconditionsexists.Consider,forinstance,theactivitygraphofFigure4.Wecanunfoldthisgraphintwoways,sincewecanchoosewhentoresetc1.Thefirstunfoldingcontainsoneinstanceofbothactivities,whereasthesecondunfoldingcontainstwoinstancesofactivityA1andoneinstanceofactivityA2.Thisexampleshowsthatanactivitygraphmaycontainraceconditionsinwhichtwoparallelbranchesofaforkusethesameconditionalcounter,whichresultsinanon-uniqueunfolding.Suchraceconditionsareundesirableandwewanttorestrictourselvestoasubclassofactivitygraphsthatdonotcontainraceconditionsandwhichhaveauniqueunfolding.
[c1>=2][c1<2][c1>=1][c1<1][c2>=1]c1:=0[c2<1]A1A2A1A2Figure4:Anon-deterministicactivitygraph.
Figure5:Anactivitygraphwhichrequirestheuseofadditionalcoun-ters.
Inordertoforbidsituationsinwhichanactivitygraphcanbeunfoldedinmorethanoneway,werequiretheexistenceofadistributionoftheprivilegesofusingtheconditionalsoverthevariousparallelbranchesin
theactivitygraph.Weobtainsuchadistribution,arelevancymapping,byassigningasetofrelevantconditionalnodestoeachnodeinanac-tivitygraph.Inordertoexcluderaceconditions,weforbidparallelismofnodesthathaveoverlappingrelevancysets.Forinstance,thecondi-tionalc1isrelevantforbothparallelbranchesoftheforknodeinFigure4,whichrendersauniqueunfoldingimpossible.
Toavoidproblemswith,forinstance,theunfoldingoftheactivitygraphinFigure5,weextendtherangeoftherelevancymappingtoallnodes1.Therationalebehindtheformaldefinitionoftherelevancymappingisasfollows.First,werequirethatanodeisrelevantforitself,andtheresetsetofaconditionalisrelevantforthatconditional.Second,werequirethatrelevancyispassedontoneighboringnodes,exceptnotforwardthroughforksandnotbackwardthroughjoins(weconsidertheselasttwosituationsseparately).Thisisnecessarytogiveaninductivedefinitionoftheunfoldingoperation.Third,ifanodeisrelevantforthesuccessorofafork,thenitisalsorelevantforthefork.Moreover,therelevancysetsofanytwodifferentsuccessorsofaforkaredisjoint.Thefirstpartisnecessaryfortheinductivedefinition,andthesecondpartistoavoidraceconditions.Fourth,werequirethatthesetofrelevancysetsofthepredecessorsofajoinisapartitioningoftherelevancysetofthejoin,which,again,isnecessaryfortheinductivedefinition.Thesefourpointsareformalizedasfollows:
Definition2(Relevancymapping)Arelevancymappingforanac-tivitygraph(N,n0,,c)isafunctionX:N→2Nsuchthat:
(i)Ifvisaconditionalnodewithc(v)=(v,n,v,R),then{v}∪R⊆
X(v).Otherwise,v∈X(v).(ii)Ifvv,visnotaforknodeandvisnotajoinnode,then
X(v)=X(v).(iii)Ifvisaforknodewithsuccessorsv1,...,vn,then∪ni=1X(vi)⊆X(v)
andX(vi)∩X(vj)=∅forall1≤i=j≤n.(iv)Ifvisajoinnodewithpredecessorsv1,...,vn,thenwerequire
X(v)=∪nj≤n.i=1X(vi)andX(vi)∩X(vj)=∅forall1≤i=
thatthenodesinaunfoldingaretuples(v,γ),wherevisanodeandγisavaluation
oftheconditionalswhicharerelevantforthatnode(γ(v)countsthenumberofexecutionsofthetrueedgeofvsinceitslastreset).NowconsiderFigure5.Whenweconstructthesetofrelevantconditionalsforeachnode,weseethateitherA1mustbelabeledwithc1orA2mustbelabeledwithc1(otherwisewecannotgiveacleaninductivedefinitionoftheunfoldingoperation).IfweassumethatA1islabeledwithc1,andweunfoldtheactivitygraph,thenweseethatonlyoneinstanceofA2appears,namely(A2,∅),sinceA2hasanemptyrelevancyset.This,ofcourse,isnotwhatweexpectfromtheunfolding.
1Assume
WecanshowthattheproblemwhetherageneralactivitygraphhasarelevancymappingisNP-completebyareductionfrom3-SATwithoutnegationandwithexactlyonetrueliteralperclause[5].However,forthemorerestrictedclassofactivitygraphsforwhichholdsthateverynodeisreachablefromtheinitialnode–whichisnotalimitingassumption–wecannotfindareduction,yetwealsocannotfindapolynomialalgorithm.Inpracticeweuseanadhocalgorithmtofindarelevancymappingthatworksfineforallactivitygraphsthatappearinthepresentpaper.
Inordertodefinethesemanticsofanactivitygraph,wedefineΓNforanactivitygraphwithnodesNasthesetofpartialfunctionswithtypeN→N.Wecallaγ∈ΓNanodevaluationandweusethefollowingabbreviations:γ[v:=v+1]mapseverynodenotequaltovtothesamevalueasγ,anditmapsv,ifitisdefinedbyγ,tothevalueγ(v)+1.Similarly,γ[R:=0]agreeswithγonthevalueofeverynodenotinRanditmapseverynodeinR,ifitisdefinedbyγ,tozero.Ifγ,γ∈ΓNandtheybotharedefinedfordisjointsetsofnodes,thenweletγ∪γdenotethenodevaluationthatisdefinedfortheunionofthesenodesetsaccordingtoγandγ.Finally,ifγ∈ΓNandSisasubsetofnodes,thenwelet[γ]SdenotethepartialnodevaluationthatisobtainedbyprojectingγtoS.
Forsimplicitywemaketwoassumptionsaboutouractivitygraphs:(1)aconditionalnodeisnotimmediatelyfollowedbyajoinnode,and(2)aforknodeisnotimmediatelyfollowedbyajoinnode.Notethatwecaneasilyeliminatetheseconstructionsinanactivitygraphbyadding“dummymerges”withonlyonepredecessor.Therefore,theseassump-tionscanbemadewithoutlossofgenerality,yettheymakethefollowingdefinitionmuchshorter.
Definition3(Unfolding)LetA=(N,n0,,c)beanactivitygraph(Nispartitionedintheusualway)withrelevancymappingX.TheunfoldingofAisadirectedgraph(V,→),whereV⊆N×ΓNisthesetofnodeinstances,and→⊆V×Visasetofdirectededges,inductivelydefinedasfollows:
(i)Thebaseclauseis:{(n0,γ0)}∈V,whereγ0(v)=0ifv∈X(n0)
anditisundefinedotherwise.(ii)Theinductiveclausesare2:
(v,γ)∈Vv∈J∪M∪Avvv∈/J(v,γ)∈V(v,γ)→(v,γ)whereγ=γ[v:=v+1]2Essentially
(1)
thisisaparameterizeddefinition.Thus,foreachactivitygraph,wecanfinda
finitesetofinductiveclauses,whichare“instances”oftheparameterizedclauses,thatareusedfortheconstructionoftheunfoldingofthatparticularactivitygraph.
(v,γ)∈Vv∈Fvv1,···,vvn
(vi,γi)∈V(v,γ)→(vi,γi)whereγi=[γ]X(vi)[v:=v+1](v1,γ1),···,(vn,γn)∈Vv1v,···,vnv
γ1(v1)=···=γn(vn)v∈J
(v,γ)∈V(vi,γi)→(v,γ)whereγ=∪ni=1γi[vi:=vi+1](v,γ)∈Vv∈Cc(v)=(v,n,v,R)γ(v) (3)(4)(5) Allsuccessorsorpredecessorsareconsideredinrules(2)and(3).Theinductivedefinitionoftheunfoldingofanactivitygraphhasauniquesolution.Forinstance,theunfoldingoftheactivitygraphinFigure2indeedistheoneinFigure3(weomittedthenodevaluations,sincethatunnecessarilycomplicatesthepicture). Anactivitygraphforwhichholdsthatitsunfoldinghasno“looseends”(whicharenonexitinstanceswithnosuccessors)iscalledwell-defined.Forinstance,theunfoldinginFigure3iswell-defined.However,ifweconstructtheunfoldingfortheactivitygraphinFigure2inwhichwehavereplacedtheupperboundofconditionalc1with3,thenweseethatthethirdinstanceofactivityA2isalooseend,sincetherewillbeonlytwoinstancesofactivityA3. Notethattheunfoldingofawell-definedactivitygraphcanbeconsid-eredasanewactivitygraphinwhichallconditionalshavebeenreplacedbymerges.Compare,forinstance,theactivitygraphinFigure2anditsunfoldinginFigure3. Letaandbbetwoinstancesinsomeunfolding.Ifthereisapathfromatob,thenwedenotethisbya→∗b.Apathconsistingofatleastoneedgeisdenotedbya→+b.Wedefineparallelismofinstancesasfollows: ab ⇐⇒ (a→∗b∧b→∗a) Wesaythataninstanceaisnon-parallelifthereisnoinstancebsuchthatab.Wenowinformallystatesomeusefulpropertiesofunfoldings.(Fortheformalstatementandproofoftheseitemswerefertotheappendix.) Manydifferentrelevancymappingsmayexistforanactivitygraph,buttheyallleadtoisomorphicunfoldings(Lemma12). A2A3A1 A2A3Figure6:ThetaskgraphoftheunfoldinginFigure3. Raceconditionsdonotappearinactivitygraphswhichhavearel-evancymapping.Thus,nodeinstanceswhichusethesamenodesarenotparallel(Lemma5). Theinstancesinawell-definedunfoldingsatisfythesamerequire-mentsonthenumberofsuccessorsandpredecessorsastheirnodesintheactivitygraph,exceptthatmergeinstanceshaveonepre-decessorandconditionalinstanceshaveonesuccessor(Lemmas8and6). Anunfoldingisacyclic,butitmightbeinfinite(Lemma9).Thereexistsasufficientsyntacticalconditiononactivitygraphsthatensuresfinitenessoftheunfolding.Wecancheckthiscondi-tionintimepolynomialinthesizeoftheactivitygraph(Lemma10). Thecontrolstructureinstances(allinstancesbutthoseofactivitynodes)canbe“strippedaway”asconditionalandmergeinstanceshavenofunctionanymore(seethethirdbulletabove).Theresultingstructureisthetaskgraph.Hence,wecallinstancesofactivitynodestasks. Definition4Let(V,→)betheunfoldingofactivitygraphA.ThetaskgraphofAisthetuple(T,→),where T={(v,γ)∈V|visanactivitynode},and→⊆T×Tdefinedas:a→bifandonlyif–a→+b,and –noc∈T\\{b}existssuchthata→+candc→+b. Thefactthattherearenocyclesinanunfoldingimpliesthatthetaskgraphisacyclictoo.Forinstance,Figure6depictsthetaskgraphoftheunfoldinginFigure3.(Again,thenodevaluationsoftheinstancesarenotdepicted.) 3. AnApproachtoExploitRepetitiveStructuresinActivityGraphs Intheprevioussectionweintroducedactivitygraphsasameansforthespecificationofschedulingproblemsformanufacturingsystemswithafiniterepetitivecontrolstructure.Thesemanticsoftheseactivitygraphswasdefinedintermsofunfoldings,whichinturndefine(possiblyinfinite)taskgraphs. ApartfromtheknownNP-hardnessofthetaskgraphschedulingproblem,wealsofaceapossibleblow-upinsizeofthetaskgraphduetonestedcycles.Thismakestheapproachinwhichwestraightforwardlyunfoldtheactivitygraphandfeedittoaschedulerinfeasible.Instead,wefindso-calledcyclicstructuresintheactivitygraph,whicharesubgraphsthatappearmorethanonceintheunfolding.Thesecyclicstructurescanbeexploitedduringscheduling,sincetheyalsodefinereappearingsubgraphsinthetaskgraph.Hence,onlyonesuchasubgraphneedstobescheduled. Ourapproachconsistsofthreesteps.First,welowertheupperboundsofconditionalstovaluesassmallaspossible,whichmeansthatwearejustabletorecognizecyclicstructuresinthecondensedactivitygraph.Second,wecomputethetaskgraphofthecondensedgraph,anduseregularschedulingtoolstofindasolutionforthisrelativelysmallprob-lem.Third,usingthecyclicstructuresandtheschedule,weconstructaschedulefortheoriginal,generallymuchlarger,activitygraph. 3.1FormalizingtheApproach Inthissectionweformalizeourthreestepplanintroducedaboveforschedulingactivitygraphs.Thefirststepinvolvesdecreasingtheupperboundsoftheconditionalsthatcontrolthecyclesintheactivitygraphsuchthattheyareminimalw.r.t.todetectingthecyclicstructures.Atthismoment,ourapproachforfindingtheminimalactivitygraphisasfollows: Theactivitygraphhasbeenconstructedwithaclearviewofwhatitshouldmean.Therefore,itisknownwhichconditionals(orsetsofconditionals)specifythecyclesofthemanufacturingprocess.Thefirststepistosettheupperboundsofalltheseconditionalstothevaluesuchthatatleastoneregularinstanceofthemanu-facturingentityispresent.E.g.,allleadingmanufacturingentities(thatdifferslightlyfromnormalones)arepresent,plusasingleregularentity.Iftheactivitiestobedoneforallentitiesarethesame,thentheupperboundissettoone. Incrementthelowerboundsofallconditionalsthatcontrolasinglecycle,untiltheactivitygraphis“extendable”fortheconditionals(belowweformallyexplainwhatextendabilitymeans).Theorderofthissearchprocesscanbearbitrary. Wedefinewhatweexactlymeanwithincrementingupperbounds. Definition5((G,n)-extension)LetAbeanactivitygraph,letGbeasubsetofconditionalsofA,andletn∈N.Wedefinethe(G,n)-extensionofA,denotedbyE(A,G,n),astheactivitygraphinwhichtheupperboundsoftheconditionalsinGhavebeenincrementedwithn.Clearly,arelevancymappingforanactivitygraphisalsoarelevancymappingforanyextensionofthatactivitygraph.Inthegeneralcase,however,theunfoldingofsuchanextensiondoesnotneedtobewell-defined,aswealreadyhaveshownintheprevioussection.Next,wedefinewhatweexactlymeanwitha“cyclicstructure”inanactivitygraph. Definition6(Cyclicstructure)LetAbeanactivitygraphandletA=(N,)beasubgraphofA.WecallAacyclicstructureofAiffthereexistsmorethanoneisomorphicembeddingofAintotheunfolding(V,→)ofA,i.e.,aninjectivefunctioni:N→Vsatisfying i(v)=(v,γ)⇒v=vvv⇐⇒i(v)→i(v) Thisdefinitioncarrieseasilyovertotaskgraphs.Notethatrepeatedpatternsinanunfoldingareduetoacycleintheactivitygraph.Thescopeofthispaperisfiniterepetitivebehaviour,whichimpliesthatthecyclesintheactivitygrapharecontrolledbyconditionals.Therefore,wetrytograsprepetitivestructuresusingsubsetsofconditionals.First,wedefinethesetofdirectsuccessorsofasubsetofinstancesN,andasubsetofthe→edgerelationthatexcludesincomingedgesofasetofnodesG: next(N)={b|a→b∧a∈N} →G={((v,γ),(v,γ))∈→|v∈/G} (6) (7) + bifandonlyifthereexistsapathfromatobWesaythata→Gwhichconsistsofoneormoreedgesin→G.Usingthesetwodefinitionswecandefinethenotionofrepetitivestructurewithinanunfolding. Definition7(Repetitivestructure)LetAbeawell-definedac-tivitygraphwithafiniteunfolding(V,→)andletGbeasubsetofcondi-tionalsofA.TherepetitivestructureinducedbyAandGisinductivelydefinedasfollows: (i)Base:R0={(n0,γ0)}andB0={(v,γ)|(n0,γ0)→+(v,γ)}.G(ii)Induction:Ri=next(Bi−1)\\Bi−1andBi={b|a→+b∧a∈Ri}.GArepetitivestructureconsistsofonlyafinitenumberofnon-emptysetssinceweassumedthattheunfoldingisfinite,andwehaveproventhatitisacyclic.AlsonotethatRionlycontainsinstancesofcondition-alsinGfori>0,andalledgesleadingoutsideBileadtoRi+1.Figure7givesagraphicalrepresentationofarepetitivestructurewhereallsetsRiandRjaredisjoint. VR1B1R2RkFigure7:Arepetitivestructure. ∗astheIfallinstancesinRiarepairwiseparallel,thenwedefineγi unionofallnodevaluationsinRiprojectedtothedomainofthecondi-tionals(thesetC)oftheactivitygraphasfollows(itiswell-definedbyLemma5oftheappendix): γ(v)if∃v(v,γ)∈Ri∧γ(v)=↑∧v∈C∗ γi(v)= ↑otherwise Next,wedefinethesituationinwhichweareabletorecognizecyclic structuresfromtherepetitivestructure.Theideaisthatwestatecondi-tionsontherepetitivestructureofasetconditionalGsuchthatcertain setsRi∪Biidentifycyclicstructuresoftheactivitygraph.Asare-sult,wecancopy-pastethesesetstoincreasetheupperboundsoftheconditionalsinGtoextendtheactivitygraph. Definition8(Extendability)LetGbeasubsetofconditionalsofanactivitygraphAandletR={R1,...,Rk}and{B1,...,Bk}betheassociatedrepetitivestructure.WecallGextendable,if thesetRisapartitioningofthesetofallinstancesofconditionals ∗isdefined:seetheproofofinG,suchthat|Ri|=|G|(hence,γi thelemmabelow), if(v,γ)→(v,γ)and(v,γ)∈Bi,then(v,γ)∈Bi∪Ri,theoutgoingedgesofRieitherarealltrueedgesorallfalseedges,and ifRiexitswithtrueedgesandRi+1exitswithfalseedges,then: ∗∗c∈G⇒γi+1(c)=γi(c)+1 ∧∗∗∗(c)≥ub(c)∧γ∗(c)≥ub(c))c∈/G⇒γi(c)=γi+1(c)∨(γii+1WecallthesetRi∪Biarepetitiveset. Theugly-lookingformulainthefourthitemofthedefinitioninfor-mallymeansthat(i)conditionalsinGhavetakentheirtrue-edgesonce inBi,and(ii)thestatusofconditionalsnotinGhasnotchanged:if ∗,thenthetrue-edgethetrue-edge(false-edge)isenabledaccordingtoγi ∗.(false-edge)isenabledaccordingtoγi+1 Lemma9IfanactivitygraphAiswell-definedandextendableforG, thenE(A,G,n)iswell-definedforanyn∈N.Moreover,thesubgraphsofAassociatedwiththerepetitivesetsarecyclicstructuresoftheextension.Proof(sketch).LetR={R1,...,Rk}andB={B1,...,Bk}betherepetitivestructureofGforanactivitygraphA.Let{i1,...,im}bethesetofindicesoftherepetitivesets.Weassumethattheindicesarestrictlyincreasing,thatisj B-setsdonotcontaininstancesofconditionalsinGvmustbeinthesetRjsuchthati=j.Thus,Risnotapartitioning,whichweassumed.Therefore,vv. Nowconsiderthe(G,n)-extensionofA,denotedbyA.Therele-vancymappingforAalsoisarelevancymappingforAandweusethatrelevancymappingtoconstructtheunfoldingofA. SinceonlytheupperboundsoftheconditionalsinGareincreased,wecanuseexactlythesameinductiveclausesfromDefinition3toconstructtheunfoldinguptotheconditionalsinthesetRi1+1.Nowinsteadoftakingthefalseedgesoftheconditionals,thetrueedgesmustbetaken,sincetheupperboundsofallcountersinGhavebeenincreasedwithn.BythefourthiteminDefinition8weknowthatinthissituationexactlythesameconditionaledgesareenabledasfromtheconditionalsinRi1.Moreover,theseconditemofDefinition8tellsusthatthestructureRi1∪Bi1isindependentfromtherestoftheunfolding(inparticularitcontainsnojoininstancesthathaveapredecessorthatisnotinRi1∪Bi1).Finally,thethirditemtellsusthateveryinstanceofaconditionalinGtakesitstrueedgefromRi1anditsfalseedgefromRi1+1.Therefore,wecansaythatthesubgraphRi1∪Bi1exactlydefinesthelastexecutionofthecyclethatiscontrolledbythesetofconditionalsG.Inotherwords,wecanapplythesameinductiveclausesthatweusedtoshowthatRi1∪Bi1ispartoftheunfoldingtoshowthata“copy”ofthissetsalsoispartoftheunfolding.Thus,wecancopyRi1∪Bi1ntimesbeforeweproceedwiththesetRi1+1. Ifwedothiscopy-pastingforalltheindices{i1,...,im},thenwehaveextendedallconditionalinstances,sincebythefirstitemofDefinition8weknowthattherearenoconditionalsinGthatarenotinsomeR-set.Theresultingunfoldingistheunfoldingofthe(G,n)-extensionofA.Moreover,itiswell-definedsinceAiswell-definedandtheseconditemofthedefinitionensuresthatcopy-pastingintroducesnolooseends.Finally,itisclearthatthesubgraphsofAassociatedwiththesetsRij∪Bijarecyclicstructures,sincewehaveshownthatthesesubgraphsreappearinthe(G,n)-extensionofAduetothecopy-pastingsketchedabove.Thepreviouslemmaonlycoverstheextensionofasinglesetofcon-ditionals,whereasingeneralweneedtheextensionofseveralsetsofconditionals.Thenextdefinitioncovershierarchy(ornesting)betweencyclicstructuresofdifferentsetsofconditionals,whichisneededforsuchaparallelextension. Definition10(Hierarchy)LetAbeanactivitygraphandletGandGbeadisjointsetsofconditionalsofA,whichbothareextendablefor A.WesaythatG≺GifandonlyifforallrepetitivesetsRi∪BiofG intheB-setofGsuchthatR∪B⊂B.wecanfindaBjiijThenextlemmastatesthatwecanextendanactivitygraphfortwo setsofconditionals,iftheyarehierarchical.Notethatwecaneasilygeneralizethislemmatoanarbitrarynumberofhierarchicalsetsofconditionals. Lemma11IfanactivitygraphAiswell-definedandextendableforGandforGandG≺G,thenE(E(A,G,n),G,n)iswell-definedforanyn,n∈N.Moreover,thesubgraphsofAassociatedwiththerepetitivesetsofGandGarecyclicstructuresoftheextension. Proof(sketch).TheideaistoconstructtheextensionofAinsideout.ThismeansthatwefirstapplythemethodsketchedintheconstructiveproofofLemma9toG,andthentoG.AssumethattherepetitivestructureofGisgivenbyR={R1,...,Rm}andB={B1,...,Bm}, ,...,R}andthattherepetitivestructureofGisgivenbyR={R1n andB={B1,...,Bn}. ByDefinition10wecanfindforeveryrepetitivesetRi∪BiofGsuchthatR∪B∈B.Thus,wecopy-pastethesetR∪BnaBjiiiij timesandalsoaddthenewinstancestothesetBj.Lemma9then saysthatthiscreatestheextensionE(A,G,n).Next,wemustprovethatGstillisextendableforthisextension.Therefore,weobservethatthecopy-pastingdoesnotchangethestatusofconditionalsnotinG, thatduetothefourthitemofDefinition8.Thus,the“new”setRj isstillequivalenttotheoldonew.r.t.thefollowstheenlargedsetBj statusoftheconditionals.Therefore,E(A,G,n)isstillextendablefor ∪BarecyclicstructuresG,andthepossiblyenlargedrepetitivesetsRjj ofE(E(A,G,n),G,n).Thisconcludesthefirststepofourapproach.Wenowcanlowerthe upperboundsofasetofconditionalsinanactivitygraphAsuchthattheseconditionalsarejustextendable(Definition8).Lemma9provesthatthesubgraphsofAassociatedwiththerepetitivesetsindeedarecyclicstructuresoftheextensionofA.Definition10andLemma11generalizethistomultiple,hierarchicalsetsofconditionals. Thesecondstepofourapproachconsistsofusingregularschedulingtoolstofinda(optimal)solutionforthecondensedactivitygraphthatwehavefoundinstepone.Weassumethatwecanobtainsuchasolu-tion,sincetheactualschedulingfallsoutsidethescopeofthispaper.Itisnoteworthy,however,thatschedulingataskgraphconsistsofintro-ducingextraprecedenceedgesbetweentasksthatareparallelandshareresourcestoensuremutualexclusionofsuchtasks. Thethirdstepconsistsofusingtherepetitivesetsofthecondensedactivitygraphofsteponeandthescheduleofsteptwotoconstructaschedulefortheoriginalactivitygraph.Therearemanydifferentstrategiestodothis.Forexample,onecouldonlyconsiderthescheduleoftherepetitivesets.Thealreadypartiallyscheduledunfolding(andtaskgraph)oftheoriginalactivitygraphcanthenbeobtainedusingthemethodsketchedintheproofofLemma9.Atthismomentwearehappywithsucha(hopefully!)goodandnon-trivialstartingpointfortheschedulingactivity.Ofcourse,mattersofoptimalityareimportantinthisstepandweregarditasanimportantsubjectoffuturework. 3.2ExampleApplicationoftheApproach Inthissubsectionweapplyourapproachtopartofaschedulingprob-lemfromawaferscanner.ItsactivitygraphisdepictedinFigure8.Inordertoachievemaximalutilization,awaferscannerhasaworkqueueofrecipestodo.Thisqueueisextendedwithextrarecipeseveryonceinawhile.Onsuchoccasionthescheduleisextended,whichimpliesaschedulingactionofa(static)activitygraph.Theconditionalupperboundsofthegraphareinstantiatedinaccordancewiththenumberofentitiesoftherecipesinthequeue.Thisexamplecoversthreeoutoffivemanufacturingentitiesthatwerediscussedintheintroduction:reticles,masks,andICs. Thenumberofreticlesinvolvedis15inthiscase.TheconditionalsetthatcanbeassociatedwiththisGC={c0,c1}.Obviously,theupperboundsoftheseconditionalsequal15. Thenumberofmasksinvolvedis8.TheconditionalsetthatcanbeassociatedwiththisGD={c2,c3}.Forthefirstmaskofeveryreticle,someadditionalactivitiesmustbeexecuted,whichiscontrolledbyconditionalsc4,c5,c6,andc8. ThenumberofICsinvolvedis43,whichiscontrolledbyconditionalsetGE={c7}.Therefore,thetotalamountofICsinthespecifiedschedulewillbe15×8×43=5160. Itisclearthatthetaskgraphassociatedwiththisactivitygraphisquitelargeandnoteasilyschedulable.WehaveimplementedthetheoryinthispaperinJava,andwecanshowinafewminutesthatthetaskgraphconsistsof11655tasks(constructionoftherelevancymappingtakesvirtuallynotime). Wetrytoapplythetechniqueexplainedintheprevioussection.Thefirststepconsistsoffindingsmallestupperboundsoftheconditionals [c0>=15]c2:=0c4:=0c5:=0c8:=0c0:=0[c0<15][c1>=15]c1:=0[c1<15][c7>=43]c7:=0[c7<43]E21E39[c2>=8][c3>=8][c2<8][c3<8]c3:=0c6:=0E40[c6<1][c4>=1][c8<1][c4<1]E29E30E31E32E33E23E20E25[c8>=1][c6>=1]E22E26E24E36E34E35[c5<1]E27[c5>=1]E37E28E38Figure8:Anactivitygraphwhichspecifiespartofareal-lifeschedulingproblemforawaferscanner. thatspecifytherepetitionsforthereticles,masksandICs.WestartbysettingtheupperboundsofGCandGEto1,sinceeveryrepetitionisequal.However,wesettheupperboundsofGDto2,sincethefirstimageofeveryreticlediffersfromtherest.Next,wechecktheextendabilityofGC,GDandGEforthiscondensedgraphwhichwecallA0:theyareallextendable.Moreover,GE≺GD≺GCasexpected,whichenablesthe“parallel”extensionoftheconditionalsets(seeLemma11).Com- putationofthecyclicstructuresandcheckingtheextendabilitytakes–forthisparticularexample–fractionsofasecondusingourtool. Forthesecondstepweusearegularschedulingtooltofindanoptimalscheduleforthecondensedactivitygraph.OnesuchanoptimalscheduleisshowninFigure9asaGanttchart. R1R2R3R4R5R6R7R8R9R10a b c dFigure9:Anoptimalscheduleforthecondensedactivitygraph. InthethirdstepweusetherepetitivestructuresofGC,GDandGEtoconstructaschedulefortheoriginalactivitygraph.Theserepetitivestructuresaregivenduringcomputationoftheextendabilityofthesetsofconditionals(seeDefinition8andLemma9).Furthermore,duringtheschedulingoftheactivitygraphinstep2,tasksthatshareresourcesareputinacertainordertosatisfythemutualexclusionpropertyofresourcesthatplaysaroleinthiskindofschedulingproblems.Thiscorrespondstoaddingadditionalprecedencestotheactivitygraph,suchthatthetaskorderisforcedtobethesameasintheschedule. Forourexample,step3ofourapproachcanbedescribedusingFigure9asfollows.TherepetitivestructurethatcanbeassociatedwithGCistheentireGanttchart.Thetasksinthetimeinterval[b,d]areassociatedwithGD.Finallythetasksintheintervals[a,b]and[c,d]areassociatedwithGE.AccordingtoLemma11weneedtoconstructtheschedulefortheoriginalproblemfromtheinsideoutwards.First,weincreasetheupperboundoftheconditionalinGE.Therefore,wecopy- pastetheinterval[a,b]42times,andthenwecopy-pastetheinterval[c,d]42times.Next,weproceedwithcopy-pastingtheintervalthatcanbeassociatedwithGD6timestoincreasetheupperboundsofconditionalsinGDtotheiroriginalvalues.Finally,wecopy-pastalltasksintheupdatedGanttchart14timestoincreasetheupperboundoftheconditionalsinGC.Notethatthiscopy-pastingdoesnotconcernatimeinterval,butasubgraphofthetaskgraph.Thetasksonresource7and9thatareshownattheleftofFigure9willsucceedthetaskthatendsatd,andtheprecedencesadmitthatitisexecutedinparallelwiththetaskstartingatdontheresources3and5.Webelievethatthescheduleisstilloptimalafterextensioninthiscase. Itisclearthatourmethodonlyinvolvestheschedulingoftherela-tivelysmalltaskgraphofthecondensedproblem.Thisrendersitinmanycasesmuchmoresuitablethanthestraightforwardapproachofschedulingtheoriginal,verylarge,taskgraph.Itisnecessarytoquan-tifythe(sub)optimalityofthegeneratedschedule,andweregardthisasanimportantsubjectforfuturework. 4.Conclusions Theideaofthisworkistoreducethecomplexityofschedulingprob-lemsbeingfacedinmanymanufacturingsystemsbyexploitationoftherepetitivepatternsthatcanberecognizedinthem.Thetaskgraphthatusuallyformsabasisfordescriptionofaschedulingproblemisextendedwithadditionalmodelingfeaturestodescribethisfiniterepet-itivebehaviour.ThisextendedmodelfollowstheUMLactivitydiagramstandard,andiscalledanactivitygraph.Infact,anactivitygraphisafolded-inequivalentofataskgraphwithrepetitivepatterns,whichisgenericforthenumberofpatternrepetitions.Theactivitygraphisfor-mallydefined,andsoisitsequivalencewithataskgraph.Animportantissueistheabsenceofraceconditionsoftheactivitygraph,whichcanbeprovenstaticallybyconstructionofarelevancymapping. Theexpressivityoftheactivitygraphsissufficientforasubsetofprac-ticalcasesfromindustry.Itispossibletomodelparallelismofdifferentinstancesofonemanufacturingentitybyintroductionofmultiplecon-ditionalscontrollingexecutionofactivitiesthatcanruninparallelforthesedifferentinstancesinthesystem.Asaconsequenceofthefactthatconditionalsarenothierarchical,i.e.,aconditionalthatcanbeassoci-atedwithalowerlevelisnotachildofaconditionalofahigherlevel,itisnotpossibletodescribeasysteminwhichmanufacturingentitiescan“overtake”eachother.Thismeansthatprocessingordermustbefirstin,firstout,whichisfineformostpracticalcases.Extensionofactivity graphsforhierarchicalconditionalscouldbeconsideredforfuturework.Thesamegoesforthead-hocalgorithmtodeterminearelevancymap-ping,whichseemstobeacceptableforpracticalcases,butapolynomialonewouldbepreferable. Theapproachforreductionofthecomplexityoftheschedulingprob-lemsexploitsthehierarchicalmanufacturingentitystructurethatre-sultsinnestedpatternsintheschedule.First,theschedulingproblemisreducedwithrespecttothenumberofrepetitions.Subsequently,thereducedproblemintheformofanactivitygraphisconvertedtotheusualformbasedonataskgraphandcanbescheduledusingappropri-atetooling.Finally,thescheduleofthereducedproblemisextendeduptothesizeoftheoriginalproblemusingrepetitivestructures.Thisextensionalgorithmisingeneralmuchmoreefficientthanschedulingtheoriginaltaskgraph.Webelievethatpreservationof(makespan)optimalityisensuredforasubsetofproblemsthatcanbedescribed.Thismeansthatforcasesinwhichinstancesofmanufacturingentitiesareprocessedsequentially,recurrentTSP-alikeproblemsarerecognizedandthereforearetobescheduledonlyoncewhilepreservingoptimality.Findingthissubsetisanimportantsubjectforfutureresearch. References [1]AvailablethroughURLhttp://www.asml.com/. [2]B.BoigelotandP.Wolper.Symbolicverificationwithperiodicsets.In6th InternationalConferenceonComputerAidedVerification,number808inLNCS,pages55–67.Springer–Verlag,1994. [3]P.CousotandR.Cousot.Abstractinterpretationandapplicationtologic programs.JournalofLogicProgramming,13(2–3):103–179,1992.(Theeditorof JournalofLogicProgramminghasmistakenlypublishedtheunreadablegalleyproof.Foracorrectversionofthispaper,seehttp://www.di.ens.fr/~cousot.). [4]R.EshuisandR.Wieringa.VerificationsupportforworkflowdesignwithUML activitygraphs.InProceedingsofInternationalConferenceonSoftwareEngi-neering,2002. [5]M.R.GareyandD.S.Johnson.ComputersandIntractability.Aguidetothe TheoryofNP-Completeness.W.H.FreemanandCompany,1979. [6]T.Gehrke,U.Goltz,andH.Wehrheim.ThedynamicmodelsofUML:Towards asemanticsanditsapplicationinthedevelopmentprocess.InHildesheimerInformatik-Bericht11/98.Institutf¨urInformatik,Universit¨atHildesheim,1998.[7]M.HendriksandK.G.Larsen.Exactaccelerationofreal-timemodelchecking. InE.Asarin,O.Maler,andS.Yovine,editors,ElectronicNotesinTheoreticalComputerScience,volume65.ElsevierSciencePublishers,April2002. [8]C.M.H.Kuijpers,C.A.J.Hurkens,andJ.B.M.Melissen.Fastmovementstrate-giesforastep-and-scanwaferstepper.StatisticaNeerlandica,51(1):55–71,1997.[9]K.G.Larsen,P.Pettersson,andW.Yi.Uppaalinanutshell.International JournalonSoftwareToolsforTechnologyTransfer,pages134–152,1998. [10]E.L.Lawler,J.K.Lenstra,A.H.G.RinnooyKan,andD.B.(eds.)Shmoys.The TravelingSalesmanProblem:AGuidedTourofCombinatorialOptimization.Wiley,NewYork,1985.[11]K.MiyashitaandK.Sycara.CABINS:Aframeworkofknowledgeacquisition anditerativerevisionforscheduleimprovementandreactiverepair.ArtificialIntelligenceJournal,76(1-2):377–426,1995.[12]N.J.M.vandenNieuwelaar,J.M.vandeMortel-Fronczak,andJ.E.Rooda.De-signofsupervisorymachinecontrol.AcceptedbyEuropeanControlConference2003.[13]M.Pinedo.Scheduling:Theory,Algorithms,andSystems.PrenticeHall,1995.[14]X.Puquan,L.Changyou,andX.Xinhe.Onsequencingproblemsofrepetitive productionsystems.IEEETransactionsonAutomaticControl,38(7),1993.[15]S.Roels.Applicabilityofmodel-checkingmethodstoschedulinginmachines. Master’sthesis,NijmeegsInstituutvoorInformaticaenInformatiekunde,Uni-versityofNijmegen,TheNetherlands,October2002.Confidential.[16]J.Rumbaugh,I.Jacobson,andG.Booch.TheUnifiedModelingLanguage ReferenceManuals.Addison-Wesley,1999.[17]OMGUnifiedModelingLanguageSpecification–version1.4,September2001. AvailablethroughURLhttp://www.omg.org/uml/.[18]W.F.J.Verhaegh.MultidimensionalPeriodicScheduling.PhDthesis,Eindhoven UniversityofTechnology,theNetherlands,1995.[19]M.Wennink.AlgorithmicSupportforAutomatedPlanningBoards.PhDthesis, EindhovenUniversityofTechnology,theNetherlands,1995.[20]J.I.vanZante-deFokkertandT.G.deKok.Thesimultaneousdeterminationof theassignmentofitemstoresources,thecycletimes,andthereorderintervalsinrepetitivepcbassembly.AnnalsofOperationsResearch,92:381–401,1999. Appendix:Proofs instancesWsuchthateither Definition1(Witness)Awitnessforaninstance(v,γ)isafinitesetof W=∅and(v,γ)=(n0,γ0),or H thereexistsan(instanceofan)inductiveclauseHinDefinition3(ii)such that“(v,γ)∈V”occursinH,andthesetofinstancesappearinginHequalsW. Definition2(Proof)Aproofofaninstance(v,γ)isafinitelabeledtreesuch thattherootislabeledwith(v,γ),andifanodeislabeledwith(v,γ),thenthelabelsofitschildrentogetherareawitnessfor(v,γ).ThesizeofaproofPisthenumberofnodesinthetree,denotedby|P|. Notethateveryinstanceofanunfoldinghasaproof. Lemma3IfXisarelevancymappingand(v,γ)isaninstanceoftheunfolding thathasbeencreatedusingX,thenthedomainofγequalsX(v). Proof.ThelemmacanbeprovenbyinductiononthenumberofapplicationsoftheclausesofDefinition3thatareneededtoshowthat(v,γ)ispartoftheunfolding. Base:1application.Then(v,γ)istheinitialinstance,andclearlyitholdsthatthedomainofγ0equalsX(n0). Induction:assumethatitholdsforaninstancewhoseexistencecanbe“proven”withnapplications.Wecaneasilyshow,usingtheextremalclausesofDefini-tion3,thatthepropositionmustalsoholdforinstanceswhoseexistencecanbeprovenwithn+1applications. Lemma4Let(v,γ)beaninstanceinanunfolding(V,→)suchthatq∈X(v). Thenareturnpath(n0,γ0)→∗(v,γ)existsofwhichallnodesarelabeledwithqbyX. Proof.WeprovethelemmabyinductiononthenumberofapplicationsofthebaseandinductiveclausesofDefinition3thatisneededtoshowthat(v,γ)∈V.Thebaseoftheinductionisformedbyoneapplicationofaclause.Sincethefirstapplicationmustbethebaseclause,wecanonlyshowthat(n0,γ0)∈V.Therefore,(v,γ)=(n0,γ0),whichclearlyprovesthatthepathexists. NowletusassumethatthedesiredpathexistsforallinstancesforwhichwecanshowthattheybelongtoVwithnapplicationsofthebaseandinductiveclauses.Letusconsideraninstance(v,γ)forwhichwecanshowinn+1applicationsofthebaseandinductiveclausesthatitbelongstoV.Thenobviously(v,γ)→(v,γ),andwedistinguishtwocases: Theedge(v,γ)→(v,γ)isaddedbyinductiveclause1,2,4,or5.Therefore,visnotajoin,andwecanconcludebyDefinition2thatq∈X(v)impliesthatq∈X(v).Byapplyingtheinductionhypothesiswecanconcludethatthedesiredpathexists. Theedgeisaddedbyinductiveclause3.Thenweknowthat(v1,γ1)→(v,γ),...,(vm,γm)→(v,γ)suchthat(v,γ)=(vi,γi)forsome1≤i≤m.Moreover,wecanshowwithnapplicationsofthebaseandinductiveclausesthat(vi,γi)belongstoVforall1≤i≤m.ByDefinition2weknowthatq∈X(v)impliesthatq∈X(vi)forsomei.Thus,byapplyingtheinductionhypothesiswecanconcludethatthedesiredpathexists. Thenextlemmaistheykeylemmathatensuresthatraceconditionsdonotappearinactivitygraphswhichhavearelevancymapping. Lemma5If(v,γ)and(v,γ)aretwodifferentinstancessuchthatq∈X(v)∩ X(v),thenapathfrom(v,γ)to(v,γ)(orthereversepath)existsofwhichallnodesarelabeledwithqbyX. Proof.Considertwoinstances(v,γ)and(v,γ)suchthatq∈X(v)∩X(v).LetPbetheproofof(v,γ)andletPbetheproofof(v,γ).Weprovethelemmabyinductionon|P|+|P|.Thebasecaseitthat|P|+|P|=2,inwhichcase(v,γ)=(v,γ)=(n0,γ0).Weassumed,however,thattheinstancesaredifferent. Fromthiscontradictionweconcludethatthepropositionholdsforthebasecase.Nowconsiderthecasewhere|P|+|P|=n.Theinductionhypothesisthensays: If(v,γ)and(v,γ)aretwodifferentinstanceswithproofsPandPrespectively,andq∈X(v)∩X(v),and|P|+|P| (u0,γ0)→(u1,γ1)→(u2,γ2)→...→(um,γm) (u0,γ0)→(u1,γ1)→(u2,γ2)→...→(un,γn) 00 where(u0,γ0)=(u0,γ0)=(n,γ),(um,γm)=(v,γ),and(un,γn)=(v,γ).Con-siderthelongestcommonprefixofthesepaths;assumethatthepathsareequaluptoindexi.Clearly,ifi=mori=n,thenthepropositionholds.Theothercaseis thati aboveDefinition3).Ifui+1=ui+1,thenwecanconcludebyDefinition3that γi+1=γi+1,whichcontradictstheassumptionthatthei+1-thinstancesaredifferent.Hence,ui+1=ui+1.However,botharelabeledbytherelevancymappingwithq.Thisviolatesthedisjunctionrequirementonforksoftherelevancymapping.Thiscontradictionshowsthatuicannotbeafork.uiisnotafork.Therefore,weknowthatui+1=ui+1.Theonlywayto achievethat(ui+1,γi+1)=(ui+1,γi+1)isthatui+1=ui+1isajoinnode,andthatthereexistsapredecessorof(ui+1,γi+1),say(w,γ∗),andapredecessor of(ui+1,γi+1),say(w,γ∗),suchthatw=wandγ∗=γ∗.Notethatby Definition3weknowthatγ∗(w=w)=γi(ui)=γ∗(w=w).Sincew=w,weknowthatw=w∈X(w)∩X(w).Moreover,Pclearlycontainsaproof for(w,γ∗)thatissmallerthanP,andPclearlycontainsaprooffor(w,γ∗) thatissmallerthanP.Therefore,wecanapplytheinductionhypothesis. Thusapath(w,γ∗)→+(w,γ∗)orapath(w,γ∗)→+(w,γ∗)existsthatis completelylabeledwithw=w.Inthefirstcase,γ∗(w=w)>γ∗(w=w),sincethevalueofwisincrementedonexitof(w,γ∗)andneverreset,becauseweassumedthatitcannotbeaconditionalnode(justaboveDefinition3).Thiscontradictstheinformationderivedabove.Thesecondcaseissimilar. Wecanconcludefromthesecontradictionsthatthecasethati 1successorincaseofconditionalinstances)astheircounterpartsintheactivitygraph,ortheyhavezerosuccessors. Proof.Supposethatwehaveaninstance(v,γ)whichhasmorethanitsallowednumberofsuccessors.Inotherwords,wecanfindtwosuccessors(v,γ)and(v,γ)suchthatv=v(byDefinitions1and3).ByLemma3weknowthatthedomainofγequalsthedomainofγ.Nowwedistinguishtwocases: v=visnotajoinnode.Bydefinition,γundergoesthesametransformation,sincebothedgesmustbeaddedbythesameinductiveclause.Thereforewecanconcludethatγ=γ,whichcontradictsourassumptions. v=visajoinnode.Then,ofcourse,(v,γ)and(v,γ)havetheir othernecessarypredecessors(seeDefinition3),say(v1,γ1),...,(vn−1,γn−1) and(v1,γ1),...,(vn−1,γn−1)respectively.Withoutlossofgeneralitywemay assumethatvi=vi.Itisclearthatγi=γiforatleastone1≤i otherwiseγ=γ,whichisacontradictionofourinitialassumption.More- over,weknowthatγi(vi)=γi(vi)bythecombinationofinductiveclause(3) andthefactthatγ(v)=γi(vi)andγ(v)=γi(vi).NowweapplyLemma 5tothedifferent(asarguedabove)instances(vi,γi)and(vi,γi)(remember thatvi=vi).Thus,weseethatapathfrom(vi,γi)to(vi,γi)existsthatis completelylabeledwithvi(ortheotherwayaround,butthatcaseissimilar). Moreover,vi=viisnotaconditionalnode(sinceweassumedjustaboveDefinition3thatconditionalscannotdirectlyleadtoajoininactivitygraphs) anditsvalueisthereforeneverreset.Inotherwords,γi(vi)>γi(vi)whichisincontradictionwithknowledgederivedabove. Ofcourse,duetofailedsynchronizationsinjoinnodes,predecessorsofjoinnodesmayhavezerosuccessors.Theresultingunfoldingisnotwell-defined.ThenextlemmaisusedintheproofofLemma8. Lemma7ConsideranactivitygraphAwithaconditionalnodevandrelevancy mappingX.Ifvisreachablefromtheinitialnode,thenthereexistsanon-conditionalnodevsuchthatv∈X(v). Proof.ConsidertheactivitygraphAwithaconditionalnodevandrelevancymappingX,andassumethatvisreachablefromtheinitialnodeofA.LetusassumethatX(v)doesnotcontainanon-conditionalnode,andconsiderthepathinAfromtheinitialnodetov,sayv0,v1,...,vn,wherev0istheinitialnodeandvnisv,andsuchthatvi=vjforall0≤i=j≤n.Definition2tellsusthatvn−1mustbeaforknodeoraconditionalnode.Ifitisaconditionalnode,thenwecanrepeatthisargumentation.Sincetheinitialnodecannotbeaconditionalnode,aforknodevionthepathexistssuchthatvjisaconditionalnodeforalli Lemma8Everyinstancehasauniquewitness. Proof.Letusconsideraninstance(v,γ)intheunfolding.First,observethat(v,γ)hasatleastonewitness,becauseitisintheunfolding.Weprovethatthiswitnessis uniquebycontradiction.Thus,weassumethatWandWaredistinctwitnessesof(v,γ),anddistinguishthreecases: visamerge,activity,forkorexit.ThenweknowbytheinductiveclausesthatwecanwriteW={(v,γ)}andW={(v,γ)}.Thus,(v,γ)→(v,γ),and(v,γ)→(v,γ).BydefinitionoftherelevancymappingX,weknowthatv∈X(v)andv∈X(v).Lemma5saysthatapath(v,γ)→(v1,γ1)→∗(v,γ)(ortheotherwayaround,butthatcaseisidentical)existssuchthatv∈X(vi)forallinstances(vi,γi)onthatpath.Wedistinguishtwocases:–(v1,γ1)=(v,γ).ByLemma6wecansaythatvisaforknodeandthatv1=v.Byconstructionofthepathweknowthatv∈X(v1).Thus,therelevancymappingforthesuccessorsoftheforknodevdoesnotsatisfythedisjunctionrestriction,whichisacontradiction.–(v1,γ1)=(v,γ).Accordingtotheinductiveclauseswecanderivethatγ(v)>γ(v),sincethevalueofvisincreasedonexitof(v,γ)andneverresetbecausevisnotaconditionalnode.Moreover,since(v,γ)→(v,γ)andvisneverresetweknowthatγ(v)≥γ(v).Combinationofthesetwoequationsgivesusthatγ(v)>γ(v),whichclearlyisacontradiction.visajoin.ThenwecanwriteW={(vi,γi)|1≤i≤n}andW={(vi,γi)|1≤i≤n},wherevi=viforsomen.Nowassumethatγi=γi forsomei(otherwise,W=W).Then(vi,γi)→(v,γ)and(vi,γi)→(v,γ).Notethatweassumed(seethetextjustaboveDefinition3)thataconditional oraforkcannotbefollowedbyajoinnode.Therefore,vi=viisnotacondi-tionalorfork.ByLemma5wethusknowthatapathfrom(vi,γi)to(vi,γi)exists(ortheotherwayaround,butthatissimilar)thatiscompletelylabeled withvi=vibytherelevancymapping.Moreover,byLemma6wecancon-cludethatthepathpassesthrough(v,γ)(sincevi=viisnotafork).Since vi=viisnotaconditional,itsvalueisneverrest.Thus,wecanderivethatγi(vi=vi)≥γ(vi=vi)andγ(vi=vi)>γi(vi=vi),sincethevalueofvi=vi isincrementedonexitof(vi,γi).Thisclearlyisacontradiction.visaconditional.ThenweknowbytheinductiveclausesthatwecanwriteW={(v,γ)}andW={(v,γ)}.Thus,(v,γ)→(v,γ),and(v,γ)→(v,γ).ByLemma7weknowthatw∈X(v)forsomenon-conditionalnodew.Bydefinitionoftherelevancymappingalsow∈X(v)andw∈X(v).Wenowcanrepeattheargumentationofthefirstitemtoshowacontradiction. Therefore,(v,γ)hasauniquewitness. Thenextlemmastatesaveryusefulpropertyofourunfoldings,namelythattheyareacyclic.Thismeansthatanunfoldingdefinesapossiblyinfinitepartialordering,whichisexactlywhatweintended. Lemma9Anunfoldingisacyclic. Proof.First,weprovethatifthereisacycleinanunfolding,thentheinitialinstance(n0,γ0)isonthatcycle.Assumethatthereisacycle,say(v1,γ1),...,(vn,γn),(v1,γ1),suchthattheinitialinstanceisnotpartofthecycle.Inorderforthiscycletobepartoftheunfolding,atleastapathfromtheinitialinstancetothiscyclemustexist(seetheextremalclauseofDefinition3). FromLemma8weconcludethatoneoftheinstancesinthecycle,say(vi,γi),isajoininstancethatconnectstheinitialinstancetothecycle(sinceonlyjoininstancescanhavemultiplepredecessorsandtheinitialinstanceisnotonthecycle).However,byDefinition3weknowthatγi+1(vi)=γi(vi)+1.Sincethevalueofajoinnodecannotbereset,itisimpossiblethat(vi+1,γi+1)→∗(vi,γi).Fromthiscontradictionweconcludethattheinitialinstancemustbepartofthecycle. Next,weprovethelemmabycontradiction.Therefore,letusassumethatacycleexistsintheunfolding.Abovewehaveshownthat(n0,γ0)isonthecycle.WiththeknowledgethattheinitialinstancecannotbeaconditionalinstancebyDefinition1(anditsvaluethusisneverreset),wecanuseasimilarargumentasabovetoshowthatthecyclecannotbeacycle.Therefore,nocyclesexistinunfoldings!Thenextlemmastatesasufficientconditiononthesyntaxofactivitygraphsforfinitenessoftheirunfoldings. Lemma10LetA=(N,n0,,c)beanactivitygraph.IfforallcyclesinA,say v1,...,vn,suchthatn≤4·||holdsthattheycontainaconditionalnode,sayvi,suchthat(vi,vi+1)isthetrueedgeandviisnotresetonthecycle,thentheunfoldingofAisfinite. Proof.Weprovethelemmabycontradictionandthereforeassumethatthepremiseshold,buttheunfoldingisinfinite.Thismeansthatthereexistsaninfinitepath,andsinceanactivitygraphisfinite,atleastonenode,sayvmustappearinfinitelyofteninthispath.Thiscanonlyoccur,ifvisonacycle.Sincethiscyclesatisfiestheprecondition,thecounterofthe“exit”conditionalvofthiscyclemustberesetinfinitelyoften(otherwisethecycleisnotinfinitelyoftenenabled).Thismeansthattheremustbeanothercycleinvolvingnodevthatresetsthecounter.Thus,connectingthesecyclesgivesusalargercyclethatcontradictsourassumptionaboutthecyclesoftheactivitygraph(namelythatthecounteroftheexitconditionalisnotreset).Thequestionnowishowlongthesetwocyclescanbe. Wefirstconsiderthecyclewhichcontainsthetrueedgeoftheexitconditional,sayvv.Thepathfromvtovcanbeboundedby||,sinceanypathfromvtovthatislongerthan||,caneasilybetransformedtoapathwithlengthboundedby||.Thesameholdsforthepathfromvtov,withtheresultthatthelengthofthisfirstcyclecanbeboundedby2·||.(Moreprecisely,ifthereisacycleintheactivitygraphinvolvingvandvvwithalengthgreaterthan2·||,thenthereexistsacyclealsoinvolvingvandvvwithalengthlessorequalto2·||.) Wecanusethesameargumenttoshowthatthecyclefromvtotheresettingconditionalofvandbackalsocanbeboundedby2·||.Combinationgivestherequiredupperbound. Lemma11If(v,γ)→+(v,γ)andw∈X(v)∩X(v),then(v,γ)occursonthe returnpathof(v,γ)forw. Proof.StraightforwardusingLemma6. Lemma12IfXandXarerelevancymappingsforanactivitygraph,thenthetwo resultingunfoldingsareisomorphic. Proof.Considerthetworesultingunfoldings(V1,→1)and(V2,→2),respectively.Inductively,weconstructamappingf:V1→V2suchthat f(v1,γ1)=(v2,γ2) (A.1) f(v1,γ1)=(v2,γ2)⇒γ1andγ2agreeonintersectionofdomains(A.2)(v,γ)→1(v,γ)⇔f(v,γ)→2f(v,γ)(A.3) ⇒ v1=v2 Supposethatfhasbeendefinedforallpredecessorsofsomenode(v,γ1)ofV1.Let Wbetheunique(byLemma8)witnessfor(v,γ1).Weconsiderthreecases: 1W=∅.Then(v,γ1)istheinitialinstance,i.e.,v=n0andγ1(v)=0 0 ifv∈X(n)anditisundefinedotherwise.Wemaptheinitialinstanceof 0 (V1,→1)totheinitialinstanceof(V2,→2),i.e.,wedefinef(v,γ1)=(n0,γ2), 00 whereγ2(v)=0ifv∈X(n)anditisundefinedotherwise.Sincebothγ1and00γ2mapasubsetofnodesto0,weseethatγ1andγ2agreeontheintersectionoftheirdomains. 2|W|=1.Inthiscase,let(v,γ1)betheuniqueelementofW.Sinceawitnessforajoinnodealwayscontainsatleasttwoelements,visnotajoinnode.Letf(v,γ1)=(v,γ2).Thenγ1andγ2agreeontheintersectionoftheirdomains.Weconsiderthreesubcases: (a)v∈J∪M∪A.Thenγ1=γ1[v:=v+1].ByDefinition3,(v,γ2)→2 (v,γ2),whereγ2=γ2[v:=v+1].Bythedefinitionofrelevancymap- ping,thedomainofγ1equalsthatofγ1,andthedomainofγ2equalsthat ofγ2.Thus,alsoγ1andγ2agreeontheintersectionoftheirdomains. Thus,ifweextendfbydefiningf(v,γ1)=(v,γ2)wemaintainprop-erties(A.1)and(A.2).Clearly,falsopreservesthe(unique)incoming transitionsof(v,γ1)and(v,γ2). (b)v∈F.Similartothecasev∈J∪M∪A.(c)v∈C.Similartothecasev∈J∪M∪A. 1n 3|W|>1.Inthiscasevisajoinnode.LetW={(v1,γ1),···,(vn,γ1)}. iii Letf(vi,γ1)=(vi,γ2),for1≤i≤n.Sinceviisinthedomainsofγ1andiiiγ2,γ1andγ2agreeontheintersectionoftheirdomains,andWisawitness,1nγ2(v1)=···=γ2(vn).Hencef(W)(definedbypointwiseextension)isa i witnessforthenodeinstance(v,γ2),whereγ2=∪ni=1γ2[vi:=vi+1].Thus, ifwedefinef(v,γ1)=(v,γ2),wepreservenodesandincomingtransitions.Theproof(A.2)islefttothereader(uselemma11). 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务