您好,欢迎来到星星旅游。
搜索
您的当前位置:首页cc1100

cc1100

来源:星星旅游


CC1100

CC1100

Low-Cost Low-Power Sub- 1 GHz RF Transceiver

Applications

• Ultra low-power wireless applications operating in the 315/433/868/915 MHz ISM/SRD bands

• Wireless alarm and security systems • Industrial monitoring and control

• Wireless sensor networks

• AMR – Automatic Meter Reading • Home and building automation

Product Description

The CC1100 is a low-cost sub- 1 GHz transceiver designed for very low-power wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868, and 915 MHz, but can easily be programmed for operation at other frequencies in the 300-348 MHz, 400-4 MHz and 800-928 MHz bands. The RF transceiver is integrated with a highly configurable baseband modem. The modem supports various modulation formats and has a configurable data up to 500 kBaud.

The main operating parameters and the -byte transmit/receive FIFOs of CC1100 can be controlled via an SPI interface. In a typical system, the CC1100 will be used together with a microcontroller and a few additional passive components.

20191817123451615CC110014131211CC1100 provides extensive hardware support for packet handling, data buffering, burst transmissions, clear channel assessment, link quality indication, and wake-on-radio.

1067

This product shall not be used in any of the following products or systems without prior express written permission from Texas Instruments: (i) (ii) (iii) Please contact lpw-medical-approval@list.ti.com if your application might fall within the category described above. implantable cardiac rhythm management systems, including without limitation pacemakers, defibrillators and cardiac resynchronization devices, external cardiac rhythm management systems that communicate directly with one or more implantable medical devices; or other devices used to monitor or treat cardiac function, including without limitation pressure sensors, biochemical sensors and neurostimulators. SWRS038C Page 1 of 96

Key FeaturesRF Performance

• High sensitivity (–111 dBm at 1.2 kBaud, 868 MHz, 1% packet error rate)

• Low current consumption (14.4 mA in RX, 1.2 kBaud, 868 MHz)

• Programmable output power up to +10 dBm for all supported frequencies

• Excellent receiver selectivity and blocking performance

• Programmable data rate from 1.2 to 500 kBaud

Frequency bands: 300-348 MHz, 400-4 MHz and 800-928 MHz

Analog Features

2-FSK, GFSK, and MSK supported as well as OOK and flexible ASK shaping • Suitable for frequency hopping systems

due to a fast settling frequency synthesizer: 90us settling time

• Automatic Frequency Compensation

(AFC) can be used to align the frequency synthesizer to the received centre frequency

• Integrated analog temperature sensor

Digital Features

• Flexible support for packet oriented

systems: On-chip support for sync word detection, address check, flexible packet length, and automatic CRC handling

• Efficient SPI interface: All registers can be

programmed with one “burst” transfer • Digital RSSI output

• Programmable channel filter bandwidth

• Programmable Carrier Sense (CS)

indicator

SWRS038C CC1100

Programmable Preamble Quality Indicator (PQI) for improved protection against false sync word detection in random noise • Support for automatic Clear Channel

Assessment (CCA) before transmitting (for listen-before-talk systems)

• Support for per-package Link Quality

Indication (LQI)

• Optional automatic whitening and de-whitening of data

Low-Power Features

• 400nA SLEEP mode current consumption • Fast startup time: 240us from sleep to RX or TX mode (measured on EM reference design [5] and [6])

• Wake-on-radio functionality for automatic low-power RX polling

Separate -byte RX and TX data FIFOs (enables burst mode data transmission)

General

• Few external components: Completely on-chip frequency synthesizer, no external filters or RF switch needed

• Green package: RoHS compliant and no

antimony or bromine

• Small size (QLP 4x4 mm package, 20

pins)

• Suited for systems targeting compliance

with EN 300 220 (Europe) and FCC CFR Part 15 (US). • Support for asynchronous and

synchronous serial receive/transmit mode for backwards compatibility with existing radio communication protocols

Page 2 of 96

CC1100 Abbreviations

Abbreviations used in this data sheet are described below.

ACP ADC Adjacent Channel Power

MSK Minimum Shift Keying Analog to Digital Converter N/A Not Applicable

AFC AGC AMR ASK BER BT CCA CFR CRC CS Carrier CW DC DVGA ESR FCC FEC FIFO FHSS 2-FSK GFSK IF I/Q ISM LC Inductor-Capacitor LNA LO Local LSB LQI

MCU Microcontroller MSB Most

Automatic Frequency Compensation Automatic Gain Control Automatic Meter Reading Amplitude Shift Keying Bit Error Rate

Bandwidth-Time product Clear Channel Assessment Code of Federal Regulations Cyclic Redundancy Check

Sense Continuous Wave (Unmodulated Carrier) Direct Current

Digital Variable Gain Amplifier Equivalent Series Resistance RC Federal Communications Commission Forward Error Correction First-In-First-Out

Frequency Hopping Spread Spectrum Binary Frequency Shift Keying

Gaussian shaped Frequency Shift Keying Intermediate Frequency In-Phase/Quadrature Industrial, Scientific, Medical Low Noise Amplifier Oscillator

Least Significant Bit Link Quality Indicator

Unit Significant Bit

SWRS038C NRZ Non Return to Zero (Coding) OOK On-Off Keying PA Power Amplifier

PCB Printed Circuit Board PD Power Down PER Packet Error Rate PLL Phase Locked Loop POR Power-On Reset

PQI Preamble Quality Indicator

PQT Preamble Quality Threshold

PTAT Proportional To Absolute Temperature QLP Quad Leadless Package QPSK Quadrature Phase Shift Keying Resistor-Capacitor

RF Radio Frequency

RSSI Received Signal Strength Indicator RX Receive, Receive Mode SAW Surface Aqustic Wave SMD Surface Mount Device SNR Signal to Noise Ratio SPI Serial Peripheral Interface SRD Short Range Devices TBD To Be Defined

T/R Transmit/Receive

TX Transmit, Transmit Mode UHF Ultra High frequency VCO Voltage Controlled Oscillator WOR

Wake on Radio, Low power polling

XOSC Crystal Oscillator XTAL Crystal

Page 3 of 96

CC1100 Table Of Contents

APPLICATIONS..................................................................................................................................................1 PRODUCT DESCRIPTION................................................................................................................................1 KEY FEATURES.................................................................................................................................................2 RF PERFORMANCE..........................................................................................................................................2 ANALOG FEATURES........................................................................................................................................2 DIGITAL FEATURES.........................................................................................................................................2 LOW-POWER FEATURES................................................................................................................................2 GENERAL............................................................................................................................................................2 ABBREVIATIONS...............................................................................................................................................3 TABLE OF CONTENTS.....................................................................................................................................4 1 ABSOLUTE MAXIMUM RATINGS.....................................................................................................7 2 OPERATING CONDITIONS.................................................................................................................7 3 GENERAL CHARACTERISTICS.........................................................................................................7 4 ELECTRICAL SPECIFICATIONS.......................................................................................................8 4.1 CURRENT CONSUMPTION............................................................................................................................8 4.2 RF RECEIVE SECTION..................................................................................................................................9 4.3 RF TRANSMIT SECTION.............................................................................................................................13 4.4 CRYSTAL OSCILLATOR..............................................................................................................................14 4.5 LOW POWER RC OSCILLATOR...................................................................................................................15 4.6 FREQUENCY SYNTHESIZER CHARACTERISTICS..........................................................................................15 4.7 ANALOG TEMPERATURE SENSOR..............................................................................................................16 4.8 DC CHARACTERISTICS..............................................................................................................................16 4.9 POWER-ON RESET.....................................................................................................................................16 5 PIN CONFIGURATION........................................................................................................................17 6 CIRCUIT DESCRIPTION....................................................................................................................18 7 APPLICATION CIRCUIT....................................................................................................................19 8 CONFIGURATION OVERVIEW........................................................................................................22 9 CONFIGURATION SOFTWARE........................................................................................................24 10 4-WIRE SERIAL CONFIGURATION AND DATA INTERFACE..................................................24 10.1 CHIP STATUS BYTE...................................................................................................................................26 10.2 REGISTER ACCESS.....................................................................................................................................26 10.3 SPI READ..................................................................................................................................................27 10.4 COMMAND STROBES.................................................................................................................................27 10.5 FIFO ACCESS............................................................................................................................................27 10.6 PATABLE ACCESS...................................................................................................................................28 11 MICROCONTROLLER INTERFACE AND PIN CONFIGURATION..........................................28 11.1 CONFIGURATION INTERFACE.....................................................................................................................28 11.2 GENERAL CONTROL AND STATUS PINS.....................................................................................................28 11.3 OPTIONAL RADIO CONTROL FEATURE......................................................................................................29 12 DATA RATE PROGRAMMING..........................................................................................................29 13 RECEIVER CHANNEL FILTER BANDWIDTH..............................................................................30 14 DEMODULATOR, SYMBOL SYNCHRONIZER, AND DATA DECISION..................................30 14.1 FREQUENCY OFFSET COMPENSATION........................................................................................................30 14.2 BIT SYNCHRONIZATION.............................................................................................................................30 14.3 BYTE SYNCHRONIZATION..........................................................................................................................31 15 PACKET HANDLING HARDWARE SUPPORT..............................................................................31 15.1 DATA WHITENING.....................................................................................................................................31 15.2 PACKET FORMAT.......................................................................................................................................32 15.3 PACKET FILTERING IN RECEIVE MODE......................................................................................................34 15.4 PACKET HANDLING IN TRANSMIT MODE...................................................................................................34 15.5 PACKET HANDLING IN RECEIVE MODE.....................................................................................................35

SWRS038C

Page 4 of 96

15.6 16 16.1 16.2 16.3 17 17.1 17.2 17.3 17.4 17.5 17.6 18 18.1 18.2 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 21 22 22.1 23 24 25 26 27 27.1 28 29 30 31 31.1 31.2 32 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 32.10 33 33.1 33.2 33.3

CC1100 PACKET HANDLING IN FIRMWARE.............................................................................................................35 MODULATION FORMATS.................................................................................................................36 FREQUENCY SHIFT KEYING.......................................................................................................................36 MINIMUM SHIFT KEYING...........................................................................................................................36 AMPLITUDE MODULATION........................................................................................................................36 RECEIVED SIGNAL QUALIFIERS AND LINK QUALITY INFORMATION............................37 SYNC WORD QUALIFIER............................................................................................................................37 PREAMBLE QUALITY THRESHOLD (PQT)..................................................................................................37 RSSI..........................................................................................................................................................37 CARRIER SENSE (CS).................................................................................................................................39 CLEAR CHANNEL ASSESSMENT (CCA).....................................................................................................40 LINK QUALITY INDICATOR (LQI)..............................................................................................................40 FORWARD ERROR CORRECTION WITH INTERLEAVING.....................................................40 FORWARD ERROR CORRECTION (FEC)......................................................................................................40 INTERLEAVING..........................................................................................................................................41 RADIO CONTROL................................................................................................................................42 POWER-ON START-UP SEQUENCE.............................................................................................................42 CRYSTAL CONTROL...................................................................................................................................43 VOLTAGE REGULATOR CONTROL..............................................................................................................43 ACTIVE MODES.........................................................................................................................................44 WAKE ON RADIO (WOR)..........................................................................................................................44 TIMING......................................................................................................................................................45 RX TERMINATION TIMER..........................................................................................................................46 DATA FIFO............................................................................................................................................46 FREQUENCY PROGRAMMING........................................................................................................48 VCO.........................................................................................................................................................48 VCO AND PLL SELF-CALIBRATION..........................................................................................................48 VOLTAGE REGULATORS.................................................................................................................49 OUTPUT POWER PROGRAMMING................................................................................................49 SHAPING AND PA RAMPING............................................................................................................50 SELECTIVITY.......................................................................................................................................52 CRYSTAL OSCILLATOR....................................................................................................................53 REFERENCE SIGNAL.................................................................................................................................. EXTERNAL RF MATCH..................................................................................................................... PCB LAYOUT RECOMMENDATIONS............................................................................................. GENERAL PURPOSE / TEST OUTPUT CONTROL PINS.............................................................55 ASYNCHRONOUS AND SYNCHRONOUS SERIAL OPERATION..............................................57 ASYNCHRONOUS OPERATION....................................................................................................................57 SYNCHRONOUS SERIAL OPERATION..........................................................................................................57 SYSTEM CONSIDERATIONS AND GUIDELINES.........................................................................57 SRD REGULATIONS...................................................................................................................................57 FREQUENCY HOPPING AND MULTI-CHANNEL SYSTEMS............................................................................58 WIDEBAND MODULATION NOT USING SPREAD SPECTRUM.......................................................................58 DATA BURST TRANSMISSIONS...................................................................................................................58 CONTINUOUS TRANSMISSIONS..................................................................................................................59 CRYSTAL DRIFT COMPENSATION..............................................................................................................59 SPECTRUM EFFICIENT MODULATION.........................................................................................................59 LOW COST SYSTEMS.................................................................................................................................59 BATTERY OPERATED SYSTEMS.................................................................................................................59 INCREASING OUTPUT POWER................................................................................................................59 CONFIGURATION REGISTERS........................................................................................................60 CONFIGURATION REGISTER DETAILS – REGISTERS WITH PRESERVED VALUES IN SLEEP STATE............... CONFIGURATION REGISTER DETAILS – REGISTERS THAT LOSE PROGRAMMING IN SLEEP STATE............84 STATUS REGISTER DETAILS.......................................................................................................................85

SWRS038C Page 5 of 96

34 34.1 34.2 34.3 34.4 34.5 35 36 37 37.1 37.2 38 39

CC1100 PACKAGE DESCRIPTION (QLP 20).................................................................................................88 RECOMMENDED PCB LAYOUT FOR PACKAGE (QLP 20)........................................................................... PACKAGE THERMAL PROPERTIES.............................................................................................................. SOLDERING INFORMATION........................................................................................................................ TRAY SPECIFICATION................................................................................................................................ CARRIER TAPE AND REEL SPECIFICATION.................................................................................................90 ORDERING INFORMATION..............................................................................................................90 REFERENCES.......................................................................................................................................91 GENERAL INFORMATION................................................................................................................92 DOCUMENT HISTORY................................................................................................................................92 PRODUCT STATUS DEFINITIONS................................................................................................................94 ADDRESS INFORMATION.................................................................................................................95 TI WORLDWIDE TECHNICAL SUPPORT......................................................................................95

SWRS038C Page 6 of 96

CC1100 1 Absolute Maximum Ratings

Under no circumstances must the absolute maximum ratings given in Table 1 be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Min –0.3 –0.3

Max 3.9 VDD+0.3 max 3.9

Voltage on the pins RF_P, RF_N, and DCOUPL Voltage ramp-up rate Input RF level

Storage temperature range Solder reflow temperature ESD

–0.3 2.0 V –50

120 +10 150 260 <500

kV/µs dBm °C °C V

According to IPC/JEDEC J-STD-020C According to JEDEC STD 22, method A114,

Human Body Model

Units V

Condition

All supply pins must have the same voltage

Parameter Supply voltage

Voltage on any digital pin V Table 1: Absolute Maximum Ratings

2 Operating Conditions

The operating conditions for CC1100 are listed Table 2 in below.

Parameter

Operating temperature Operating supply voltage

Min -40 1.8

Max 85 3.6

Unit °C V

Condition

All supply pins must have the same voltage

Table 2: Operating Conditions

3 General Characteristics

Parameter Frequency range

Min 300

Typ

Max 348

Unit MHz

Condition/Note

400 4 MHz 800 928 MHz Data rate

1.2 1.2 26

500 kBaud

250 500

kBaud kBaud

2-FSK

GFSK, OOK, and ASK

(Shaped) MSK (also known as differential offset

QPSK)

Optional Manchester encoding (the data rate in kbps will be half the baud rate)

Table 3: General Characteristics

SWRS038C Page 7 of 96

CC1100 4 Electrical Specifications

4.1 Current Consumption

Tc = 25°C, VDD = 3.0V if nothing else stated. All measurement results are obtained using the CC1100EM reference designs ( [5] and [6]). Reduced current settings (MDMCFG2.DEM_DCFILT_OFF=1) gives a slightly lower current consumption at the cost of a reduction in sensitivity. See Table 5 for additional details on current consumption and sensitivity. Parameter

Current consumption in power down modes

Min Typ Max UnitCondition

400 900

nA nA

Voltage regulator to digital part off, register values retained (SLEEP state). All GDO pins programmed to 0x2F (HW to 0) Voltage regulator to digital part off, register values retained, low-power RC oscillator running (SLEEP state with WOR enabled Voltage regulator to digital part off, register values retained, XOSC running (SLEEP state with MCSM0.OSC_FORCE_ON set) Voltage regulator to digital part on, all other modules in power down (XOFF state)

Automatic RX polling once each second, using low-power RC oscillator, with 460 kHz filter bandwidth and 250 kBaud data rate,

th

PLL calibration every 4 wakeup. Average current with signal in channel below carrier sense level (MCSM2.RX_TIME_RSSI=1). Same as above, but with signal in channel above carrier sense level, 1.95 ms RX timeout, and no preamble/sync word found. Automatic RX polling every 15 second, using low-power RC oscillator, with 460kHz filter bandwidth and 250 kBaud data rate,

th

PLL calibration every 4 wakeup. Average current with signal in channel below carrier sense level (MCSM2.RX_TIME_RSSI=1). Same as above, but with signal in channel above carrier sense level, 29.3 ms RX timeout, and no preamble/sync word found.

th

95 µA 160 µA

Current consumption

9.8 µA

34.2 µA 1.5 µA

39.3 µA

1.6 8.2

mA Only voltage regulator to digital part and crystal oscillator running

(IDLE state) mA Only the frequency synthesizer is running (FSTXON state). This

currents consumption is also representative for the other

intermediate states when going from IDLE to RX or TX, including the calibration state. mA Receive mode, 1.2 kBaud, reduced current, input at sensitivity

limit mA Receive mode, 1.2 kBaud, reduced current, input well above

sensitivity limit mA Receive mode, 38.4 kBaud, reduced current, input at sensitivity

limit mA Receive mode,38.4 kBaud, reduced current, input well above

sensitivity limit mA Receive mode, 250 kBaud, reduced current, input at sensitivity

limit mA Receive mode, 250 kBaud, reduced current, input well above

sensitivity limit mA Transmit mode, +10 dBm output power mA Transmit mode, 0 dBm output power mA Transmit mode, –6 dBm output power

Current consumption, 315MHz

15.1 13.9 14.9 14.1 15.9 14.5 27.0 14.8 12.3

SWRS038C Page 8 of 96

Parameter

Current consumption, 433MHz

Current consumption, 868/915MHz

15.5 14.5 15.4 14.4 16.5 15.2 28.9 15.5 13.1 15.4 14.4 15.2 14.4 16.4 15.1 31.1 16.9 13.5

CC1100 Min Typ Max UnitCondition

mA Receive mode, 1.2 kBaud , reduced current, input at sensitivity

limit mA Receive mode, 1.2 kBaud , reduced current, input well above

sensitivity limit mA Receive mode, 38.4 kBaud , reduced current, input at sensitivity

limit mA Receive mode, 38.4 kBaud , reduced current, input well above

sensitivity limit mA Receive mode, 250 kBaud , reduced current, input at sensitivity

limit mA Receive mode, 250 kBaud , reduced current, input well above

sensitivity limit mA Transmit mode, +10 dBm output power mA Transmit mode, 0 dBm output power mA Transmit mode, –6 dBm output power

mA Receive mode, 1.2 kBaud , reduced current, input at sensitivity

limit mA Receive mode, 1.2 kBaud , reduced current, input well above

sensitivity limit mA Receive mode, 38.4 kBaud , reduced current, input at sensitivity

limit mA Receive mode,38.4 kBaud , reduced current, input well above

sensitivity limit mA Receive mode, 250 kBaud , reduced current, input at sensitivity

limit mA Receive mode, 250 kBaud , reduced current, input well above

sensitivity limit mA Transmit mode, +10 dBm output power mA Transmit mode, 0 dBm output power mA Transmit mode, –6 dBm output power

Table 4: Electrical Specifications

4.2 RF Receive Section

Tc = 25°C, VDD = 3.0V if nothing else stated. All measurement results are obtained using the CC1100EM reference designs ( [5] and [6]). Parameter Digital channel filter bandwidth

Min 58

Typ

Max 812

Unit kHz

Condition/Note

User programmable. The bandwidth limits are proportional to crystal frequency (given values assume a 26.0 MHz crystal).

315 MHz, 1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth) Receiver sensitivity

-111

dBm

Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current

consumption is then reduced from 17.1 mA to 15.1 mA at

sensitivity limit. The sensitivity is typically reduced to -109 dBm

315 MHz, 500 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MDMCFG2.DEM_DCFILT_OFF=1 cannot be used for data rates > 250 kBaud)

(MSK, 1% packet error rate, 20 bytes packet length, 812 kHz digital channel filter bandwidth)

-88

dBm

SWRS038C Page 9 of 96

Parameter

Min

Typ

Max

Unit

Condition/Note

CC1100 433 MHz, 1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth Receiver sensitivity

–110

dBm

Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current

consumption is then reduced from 17.4 mA to 15.5 mA at

sensitivity limit. The sensitivity is typically reduced to -108 dBm

433 MHz, 38.4 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 1% packet error rate, 20 bytes packet length, 20 kHz deviation, 100 kHz digital channel filter bandwidth) Receiver sensitivity

–103

dBm

433 MHz, 250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MSK, 1% packet error rate, 20 bytes packet length, 0 kHz digital channel filter bandwidth) Receiver sensitivity

–94

dBm

433 MHz, 500 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MDMCFG2.DEM_DCFILT_OFF=1 cannot be used for data rates > 250 kBaud)

(MSK, 1% packet error rate, 20 bytes packet length, 812 kHz digital channel filter bandwidth) Receiver sensitivity

–88 dBm

868 MHz, 1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth) Receiver sensitivity

–111

dBm

Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current

consumption is then reduced from 17.7 mA to 15.4 mA at

sensitivity limit. The sensitivity is typically reduced to -109 dBm Desired channel 3 dB above the sensitivity limit. 100 kHz channel spacing

Desired channel 3 dB above the sensitivity limit. 100 kHz channel spacing

See Figure 25 for plot of selectivity versus frequency offset IF frequency 152 kHz

Desired channel 3 dB above the sensitivity limit.

Saturation –15 dBm Adjacent channel rejection Alternate channel rejection

Image channel rejection, 868MHz

33 33 30

dB dB dB

868 MHz, 38.4 kBaud data rate

(2-FSK, 1% packet error rate, 20 bytes packet length, 20 kHz deviation, 100 kHz digital channel filter bandwidth) Receiver sensitivity Adjacent channel rejection Alternate channel rejection

Image channel rejection, 868MHz

–103 20 28 23

dBm dB dB dB

Desired channel 3 dB above the sensitivity limit. 200 kHz channel spacing

Desired channel 3 dB above the sensitivity limit. 200 kHz channel spacing

See Figure 26 for plot of selectivity versus frequency offset IF frequency 152 kHz

Desired channel 3 dB above the sensitivity limit.

Saturation –16 dBm

SWRS038C Page 10 of 96

Parameter

Min

Typ

Max

Unit

Receiver sensitivity

–93

dBm

Condition/Note

CC1100 868 MHz, 250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MSK, 1% packet error rate, 20 bytes packet length, 0 kHz digital channel filter bandwidth)

Sensitivity can be traded for current consumption by setting

MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then reduced from 18.8 mA to 16.4 mA at sensitivity limit. The sensitivity is typically reduced to -91 dBm

Desired channel 3 dB above the sensitivity limit. 750 kHz channel spacing

Desired channel 3 dB above the sensitivity limit. 750 kHz channel spacing

See Figure 27 for plot of selectivity versus frequency offset IF frequency 2 kHz

Desired channel 3 dB above the sensitivity limit.

Saturation –16 dBm Adjacent channel rejection Alternate channel rejection

Image channel rejection, 868MHz

24 37 14

dB dB dB

868 MHz, 500 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MDMCFG2.DEM_DCFILT_OFF=1 cannot be used for data rates > 250 kBaud )

(MSK, 1% packet error rate, 20 bytes packet length, 812 kHz digital channel filter bandwidth) Receiver sensitivity

–88 dBm

868 MHz, 250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(OOK, 1% packet error rate, 20 bytes packet length, 0 kHz digital channel filter bandwidth) Receiver sensitivity

-86 dBm

915 MHz, 1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 5.2kHz deviation, 1% packet error rate, 20 bytes packet length, 58 kHz digital channel filter bandwidth) Receiver sensitivity

–111

dBm

Sensitivity can be traded for current consumption by setting

MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then reduced from 17.7 mA to 15.4 mA at sensitivity limit. The sensitivity is typically reduced to -109 dBm

915 MHz, 38.4 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(2-FSK, 1% packet error rate, 20 bytes packet length, 20 kHz deviation, 100 kHz digital channel filter bandwidth) Receiver sensitivity

–104 dBm

915 MHz, 250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0

(MSK, 1% packet error rate, 20 bytes packet length, 0 kHz digital channel filter bandwidth) Receiver sensitivity

–93

dBm

Sensitivity can be traded for current consumption by setting

MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then reduced from 18.8 mA to 16.4 mA at sensitivity limit. The sensitivity is typically reduced to -92 dBm

915 MHz, 500 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0 (MDMCFG2.DEM_DCFILT_OFF=1 cannot be used for data rates > 250 kBaud )

(MSK, 1% packet error rate, 20 bytes packet length, 812 kHz digital channel filter bandwidth) Receiver sensitivity

–87 dBm

SWRS038C Page 11 of 96

Parameter Blocking

Blocking at ±2 MHz offset, 1.2 kBaud, 868 MHz Blocking at ±2 MHz offset, 500 kBaud, 868 MHz Blocking at ±10 MHz offset, 1.2 kBaud, 868 MHz Blocking at ±10 MHz offset, 500 kBaud, 868 MHz General

Spurious emissions

-68 -66

RX latency

9

–57 –47

-53

Min

Typ

Max

Unit dBm

CC1100 Condition/Note

Desired channel 3dB above the sensitivity limit. Compliant with ETSI EN 300 220 class 2 receiver requirement.

-51 dBm Desired channel 3dB above the sensitivity limit. Compliant with ETSI EN 300 220 class 2 receiver requirement.

-43 dBm Desired channel 3dB above the sensitivity limit. Compliant with ETSI EN 300 220 class 2 receiver requirement.

-43 dBm Desired channel 3dB above the sensitivity limit. Compliant with ETSI EN 300 220 class 2 receiver requirement.

dBm dBm bit

25 MHz – 1 GHz

(Maximum figure is the ETSI EN 300 220 limit) Above 1 GHz

(Maximum figure is the ETSI EN 300 220 limit)

Serial operation. Time from start of reception until data is available on the receiver data output pin is equal to 9 bit.

Table 5: RF Receive Section

SWRS038C Page 12 of 96

4.3

RF Transmit Section

CC1100 Tc = 25°C, VDD = 3.0V, +10dBm if nothing else stated. All measurement results are obtained using the CC1100EM reference designs ( [5] and [6]). Parameter Differential load impedance 315 MHz 433 MHz 868/915 MHz Output power, highest setting

Min

Typ 122 + j31 116 + j41 86.5 + j43

+10 dBm

Output power is programmable, and full range is available in all

frequency bands

(Output power may be restricted by regulatory limits. See also Application Note AN039 [3]. Delivered to a 50Ω single-ended load via CC1100EM reference design ( [5] and [6]) RF matching network.

Output power,

lowest setting

-30 dBm

Output power is programmable, and full range is available in all

frequency bands.

Delivered to a 50Ω single-ended load via CC1100EM reference design( [5] and [6]) RF matching network.

Harmonics,

radiated

2Harm, 433 MHz rd

3 Harm, 433 MHz 2Harm, 868 MHz rd

3 Harm, 868 MHz Harmonics, conducted 315 MHz

433 MHz

868 MHz

915 MHz

nd nd

Max

Unit Ω

Condition/Note

Differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna. Follow the CC1100EM reference design ( [5] and [6]) available from theTI website.

-50 -40 -34 -45 < -33 < -38 < -51 < -34 < -32 < -30

dBm

Measured on CC1100EM reference designs( [5] and [6]) with CW, 10 dBm output power

The antennas used during the radiated measurements (SMAFF-433 from R.W.Badland and Nearson S331 868/915) plays a part in attenuating the harmonics

dBm

Measured with 10 dBm CW, TX frequency at 315.00 MHz, 433.00 MHz, 868.00 MHz, or 915.00 MHz Frequencies below 960 MHz Frequencies above 960 MHz

Frequencies below 1 GHz Frequencies above 1 GHz

SWRS038C Page 13 of 96

Spurious emissions, conducted Harmonics not included 315 MHz

433 MHz

868 MHz

915 MHz General TX latency

8

bit

< -58 < -53 < -50 < - < -56 < -50 < -51 < -53 < -51 < -51

CC1100 Measured with 10 dBm CW, TX frequency at 315.00 MHz, 433.00 MHz, 868.00 MHz or 915.00 MHz

Frequencies below 960 MHz Frequencies above 960 MHz

Frequencies below 1 GHz Frequencies above 1 GHz

Frequencies within 47-74, 87.5-118, 174-230, 470-862 MHz

Frequencies below 1 GHz Frequencies above 1 GHz

Frequencies within 47-74, 87.5-118, 174-230, 470-862 MHz. The peak conducted spurious emission is -53dBm @ 699 MHz, which is in an EN300220 restricted band limited to -dBm. All radiated spurious emissions are within the limits of ETSI.

Frequencies below 960 MHz Frequencies above 960 MHz

dBm

Serial operation. Time from sampling the data on the transmitter data input DIO pin until it is observed on the RF output ports.

Table 6: RF Transmit Section

4.4 Crystal Oscillator

Tc = 25°C @ VDD = 3.0 V if nothing else is stated. Parameter Crystal frequency Tolerance

Min 26

Typ 26 ±40

Max 27

Unit MHz ppm

Condition/Note

This is the total tolerance including a) initial tolerance, b)

crystal loading, c) aging, and d) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing / bandwidth.

ESR 100 Ω Start-up time

150

µs

Measured on the CC1100EM reference designs ( [5] and [6])

using crystal AT-41CD2 from NDK.

This parameter is to a large degree crystal dependent.

Table 7: Crystal Oscillator Parameters

SWRS038C Page 14 of 96

4.5

Low Power RC Oscillator

CC1100 Tc = 25°C, VDD = 3.0 V if nothing else is stated. All measurement results obtained using the CC1100EM reference designs ( [5] and [6]). Parameter

Calibrated frequency Frequency accuracy after calibration

Temperature coefficient Supply voltage coefficient Initial calibration time

Min 34.7

Typ 34.7

Max 36

Unit kHz

Condition/Note

Calibrated RC Oscillator frequency is XTAL frequency divided by 750

±1 %

+0.5 +3 2

% / °C % / V ms

Frequency drift when temperature changes after

calibration

Frequency drift when supply voltage changes after calibration

When the RC Oscillator is enabled, calibration is continuously done in the background as long as the crystal oscillator is running.

Table 8: RC Oscillator Parameters

4.6

Frequency Synthesizer Characteristics

Tc = 25°C @ VDD = 3.0 V if nothing else is stated. All measurement results are obtained using the CC1100EM reference designs ( [5] and [6]). Min figures are given using a 27 MHz crystal. Typ and max are given using a 26 MHz crystal. Parameter

Programmed frequency resolution

Min

Typ

Max 412

Unit Hz

Condition/Note 26-27 MHz crystal.

The resolution (in Hz) is equal for all frequency bands.

ppm

Given by crystal used. Required accuracy

(including temperature and aging) depends on frequency band and channel bandwidth / spacing.

@ 50 kHz offset from carrier @ 100 kHz offset from carrier @ 200 kHz offset from carrier @ 500 kHz offset from carrier @ 1 MHz offset from carrier @ 2 MHz offset from carrier @ 5 MHz offset from carrier @ 10 MHz offset from carrier

Time from leaving the IDLE state until arriving in the RX, FSTXON or TX state, when not performing calibration. Crystal oscillator running.

Settling time for the 1·IF frequency step from RX to TX

Settling time for the 1·IF frequency step from TX to RX

Calibration can be initiated manually or

automatically before entering or after leaving RX/TX.

397 FXOSC/

162

Synthesizer frequency tolerance

±40

RF carrier phase noise RF carrier phase noise RF carrier phase noise RF carrier phase noise RF carrier phase noise RF carrier phase noise RF carrier phase noise RF carrier phase noise PLL turn-on / hop time

85.1

– – –90 –98 –107 –113 –119 –129 88.4

88.4

dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz µs

PLL RX/TX settling time PLL TX/RX settling time PLL calibration time

9.3 20.7 694

9.6 21.5 721

9.6 21.5 721

µs µs µs

Table 9: Frequency Synthesizer Parameters

SWRS038C Page 15 of 96

4.7

Analog Temperature Sensor

CC1100 The characteristics of the analog temperature sensor at 3.0 V supply voltage are listed in Table 10 below. Note that it is necessary to write 0xBF to the PTEST register to use the analog temperature sensor in the IDLE state.

Parameter

Output voltage at –40°C Output voltage at 0°C Output voltage at +40°C Output voltage at +80°C Temperature coefficient Error in calculated

temperature, calibrated

Min

Typ

Max

Unit

Condition/Note

0.651 0.747 0.847 0.945 -2

*

V V V V

Fitted from –20 °C to +80 °C

2.45

*

mV/°C

0 2 °C From –20 °C to +80 °C when using 2.45 mV / °C,

after 1-point calibration at room temperature

*

The indicated minimum and maximum error with 1-point calibration is based on simulated values for typical process parameters

Current consumption increase when enabled

0.3 mA

Table 10: Analog Temperature Sensor Parameters

4.8 DC Characteristics

Tc = 25°C if nothing else stated. Digital Inputs/Outputs Logic \"0\" input voltage Logic \"1\" input voltage Logic \"0\" output voltage Logic \"1\" output voltage Logic \"0\" input current Logic \"1\" input current

Min

0 VDD-0.7

0 VDD-0.3 N/A N/A

Max

0.7 VDD 0.5 VDD –50 50

Unit V V V V nA nA

Condition

For up to 4 mA output current For up to 4 mA output current Input equals 0V Input equals VDD

Table 11: DC Characteristics

4.9 Power-On Reset

When the power supply complies with the requirements in Table 12 below, proper Power-On-Reset

functionality is guaranteed. Otherwise, the chip should be assumed to have unknown state until transmitting an SRES strobe over the SPI interface. See Section 19.1 on page 42 for further details.

Parameter

Power-up ramp-up time. Power off time

Min 1

Typ

Max 5

Unit ms ms

Condition/Note

From 0V until reaching 1.8V

Minimum time between power-on and power-off

Table 12: Power-On Reset Requirements

SWRS038C Page 16 of 96

DGUARDRBIAS CC1100 5 Pin Configuration

GNDGND15AVDD14AVDD13RF_N12RF_P11AVDD

6GDO0 (ATEST)7CSn8XOSC_Q1910AVDDXOSC_Q2GNDExposed dieattach pad

2019181716SCLK1SO (GDO1)2

GDO23DVDD4DCOUPL5

SI

Figure 1: Pinout Top View

Note: The exposed die attach pad must be connected to a solid ground plane as this is the main ground connection for the chip.

Pin # Pin Name 1 2

SCLK SO (GDO1)

Pin type Digital Input Digital Output

Description

Serial configuration interface, clock input Serial configuration interface, data output. Optional general output pin when CSn is high

3 GDO2 Digital Output

Digital output pin for general use: • Test signals • FIFO status signals • Clear Channel Indicator

• Clock output, down-divided from XOSC • Serial output RX data

4 5

DVDD DCOUPL

Power (Digital) Power (Digital)

1.8 - 3.6 V digital power supply for digital I/O’s and for the digital core

voltage regulator

1.6 - 2.0 V digital power supply output for decoupling.

NOTE: This pin is intended for use with the CC1100 only. It can not be used to provide supply voltage to other devices.

6 GDO0 (ATEST)

Digital I/O

Digital output pin for general use: • Test signals • FIFO status signals • Clear Channel Indicator

• Clock output, down-divided from XOSC • Serial output RX data • Serial input TX data

Also used as analog test I/O for prototype/production testing

7 8 9 10

CSn XOSC_Q1 AVDD XOSC_Q2

Digital Input Analog I/O Power (Analog) Analog I/O

Serial configuration interface, chip select Crystal oscillator pin 1, or external clock input 1.8 - 3.6 V analog power supply connection Crystal oscillator pin 2

SWRS038C Page 17 of 96

Pin # Pin Name 11 12

AVDD RF_P

Pin type Power (Analog) RF I/O

Description

CC1100 1.8 -3.6 V analog power supply connection Positive RF input signal to LNA in receive mode Positive RF output signal from PA in transmit mode

13 RF_N RF I/O Negative RF input signal to LNA in receive mode Negative RF output signal from PA in transmit mode

14 15 16 17 18 19 20

AVDD AVDD GND RBIAS DGUARD GND SI

Power (Analog) Power (Analog) Ground (Analog) Analog I/O Power (Digital) Ground (Digital) Digital Input

1.8 - 3.6 V analog power supply connection 1.8 - 3.6 V analog power supply connection Analog ground connection

External bias resistor for reference current Power supply connection for digital noise isolation Ground connection for digital noise isolation Serial configuration interface, data input

Table 13: Pinout Overview

6 Circuit Description

RADIO CONTROLDEMODULATORPACKET HANDLERADCRF_PRF_N

DIGITAL INTERFACE TO MCULNAFEC / INTERLEAVERRXFIFOADCSCLKSO (GDO1)SICSnGDO0 (ATEST)GDO2090FREQSYNTHRC OSCBIASXOSCTXFIFOPAMODULATORRBIASXOSC_Q1XOSC_Q2

Figure 2: CC1100 Simplified Block Diagram

A simplified block diagram of CC1100 is shown in Figure 2.

frequency synthesizer includes a completely on-chip LC VCO and a 90 degree phase shifter for generating the I and Q LO signals to the down-conversion mixers in receive mode. A crystal is to be connected to XOSC_Q1 and XOSC_Q2. The crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the ADC and the digital part. A 4-wire SPI serial interface is used for configuration and data buffer access.

The digital baseband includes support for channel configuration, packet handling, and data buffering.

CC1100 features a low-IF receiver. The received RF signal is amplified by the low-noise amplifier (LNA) and down-converted in quadrature (I and Q) to the intermediate frequency (IF). At IF, the I/Q signals are digitised by the ADCs. Automatic gain control (AGC), fine channel filtering and demodulation bit/packet synchronization are performed digitally.

The transmitter part of CC1100 is based on direct synthesis of the RF frequency. The

SWRS038C Page 18 of 96

CC1100 The balun and LC filter component values and their placement are important to keep the performance optimized. It is highly recommended to follow the CC1100EM reference design [5] and [6]. Crystal

The crystal oscillator uses an external crystal with two loading capacitors (C81 and C101). See Section 27 on page 53 for details. Additional Filtering

Additional external components (e.g. an RF SAW filter) may be used in order to improve the performance in specific applications. Power Supply Decoupling

The power supply must be properly decoupled close to the supply pins. Note that decoupling capacitors are not shown in the application circuit. The placement and the size of the decoupling capacitors are very important to achieve the optimum performance. The CC1100EM reference design ( [5] and [6]) should be followed closely.

7 Application Circuit

Only a few external components are required for using the CC1100. The recommended application circuits are shown in Figure 3 and Figure 4. The external components are described in Table 14, and typical values are given in Table 15. Bias Resistor

The bias resistor R171 is used to set an accurate bias current. Balun and RF Matching

The components between the RF_N/RF_P pins and the point where the two signals are joined together (C131, C121, L121 and L131 for the 315/433 MHz reference design [5]. L121, L131, C121, L122, C131, C122 and L132 for the 868/915 MHz reference design [6]) form a balun that converts the differential

RF signal on CC1100 to a single-ended RF signal. C124 is needed for DC blocking. Together with an appropriate LC network, the balun components also transform the impedance to match a 50 Ω antenna (or cable). Suggested values for 315 MHz, 433 MHz, and 868/915 MHz are listed in Table 15.

Component

C51 C81/C101

Description

Decoupling capacitor for on-chip voltage regulator to digital part Crystal loading capacitors, see Section 27 on page 53 for details

C121/C131 C122 C123 C124 C125 L121/L131 L122 L123 L124 L132 R171 XTAL

RF balun/matching capacitors

RF LC filter/matching filter capacitor (315 and 433 MHz). RF balun/matching capacitor (868/915 MHz). RF LC filter/matching capacitor RF balun DC blocking capacitor

RF LC filter DC blocking capacitor (only needed if there is a DC path in the antenna) RF balun/matching inductors (inexpensive multi-layer type)

RF LC filter/matching filter inductor (315 and 433 MHz). RF balun/matching inductor (868/915 MHz). (inexpensive multi-layer type)

RF LC filter/matching filter inductor (inexpensive multi-layer type) RF LC filter/matching filter inductor (inexpensive multi-layer type) RF balun/matching inductor. (inexpensive multi-layer type) Resistor for internal bias current reference.

26MHz - 27MHz crystal, see Section 27 on page 53 for details.

Table 14: Overview of External Components (excluding supply decoupling capacitors)

SWRS038C Page 19 of 96

1.8V-3.6V power supplyR171 CC1100 SISI 20RBIAS 17GND 19DGUARD 18GND 16SCLK1 SCLK2 SO (GDO1)3 GDO24 DVDDAVDD 15AVDD 14RF_N 13RF_P 1210 XOSC_Q2Antenna(50 Ohm)C131L131C121L121C124L122L123C122C125Digital IntefaceSO(GDO1)GDO2(optional)CC1100DIE ATTACH PAD:8 XOSC_Q16 GDO09 AVDD7 CSn5 DCOUPLAVDD 11C123C51GDO0(optional)CSnXTALC81C101

Figure 3: Typical Application and Evaluation Circuit 315/433 MHz (excluding supply

decoupling capacitors)

1.8V-3.6V power supplyR171SIDGUARD 18RBIAS 17GND 16SI 20GND 19SCLK1 SCLK2 SO (GDO1)3 GDO24 DVDDAVDD 15AVDD 14RF_N 13C131L131C121L121L122C124L132L123C122C123L124Antenna(50 Ohm)Digital IntefaceSO(GDO1)GDO2(optional)C125DIE ATTACH PAD:10 XOSC_Q28 XOSC_Q1RF_P 12AVDD 115 DCOUPL6 GDO0C51GDO0(optional)CSnXTALC81C1019 AVDD7 CSn

Figure 4: Typical Application and Evaluation Circuit 868/915 MHz (excluding supply

decoupling capacitors)

SWRS038C Page 20 of 96

Component

C51 C81 C101 C121 C122 C123 C124 C125 C131 L121 L122 L123 L124 L131 L132

6.8 pF ± 0.5 pF, 0402 NP0 12 pF ± 5%, 0402

NP0 6.8 pF ± 0.5 pF, 0402 NP0 220 pF ± 5%, 0402 NP0 220 pF ± 5%, 0402 NP0 6.8 pF ± 0.5 pF, 0402 NP0 33 nH ± 5%, 0402

monolithic 18 nH ± 5%, 0402

monolithic 33 nH ± 5%, 0402

monolithic

33 nH ± 5%, 0402

monolithic

Value at 315MHz

Value at 433MHz

CC1100 Value at 868/915MHz

Manufacturer Murata GRM1555C series Murata GRM1555C series Murata GRM1555C series

1.0 pF ± 0.25 pF, 0402 NP0 1.5 pF ± 0.25 pF, 0402 NP0 3.3 pF ± 0.25 pF, 0402 NP0 100 pF ± 5%, 0402 NP0 100 pF ± 5%, 0402 NP0 1.5 pF ± 0.25 pF, 0402 NP0 12 nH ± 5%, 0402 monolithic 18 nH ± 5%, 0402 monolithic 12 nH ± 5%, 0402 monolithic 12 nH ± 5%, 0402 monolithic 12 nH ± 5%, 0402 monolithic 18 nH ± 5%, 0402 monolithic

Murata GRM1555C series Murata GRM1555C series Murata GRM1555C series Murata GRM1555C series Murata GRM1555C series Murata GRM1555C series Murata LQG15HS series Murata LQG15HS series Murata LQG15HS series Murata LQG15HS series Murata LQG15HS series Murata LQG15HS series

Koa RK73 series NDK, AT-41CD2

100 nF ± 10%, 0402 X5R 27 pF ± 5%, 0402 NP0 27 pF ± 5%, 0402 NP0

3.9 pF ± 0.25 pF,

0402 NP0 8.2 pF ± 0.5 pF, 0402 NP0 5.6 pF ± 0.5 pF, 0402 NP0 220 pF ± 5%, 0402 NP0 220 pF ± 5%, 0402 NP0 3.9 pF ± 0.25 pF,

0402 NP0 27 nH ± 5%, 0402

monolithic 22 nH ± 5%, 0402

monolithic 27 nH ± 5%, 0402

monolithic

27 nH ± 5%, 0402

monolithic

R171 56 kΩ ± 1%, 0402 XTAL

26.0 MHz surface mount crystal

Table 15: Bill Of Materials for the Application Circuit

The Gerber files for the CC1100EM reference designs ( [5] and [6]) are available from the TI website.

SWRS038C Page 21 of 96

CC1100 • Forward Error Correction (FEC) with

interleaving • Data Whitening • Wake-On-Radio (WOR)

Details of each configuration register can be found in Section 33, starting on page 60. 8 Configuration Overview

CC1100 can be configured to achieve optimum performance for many different applications.

Configuration is done using the SPI interface. The following key parameters can be programmed:

• Power-down / power up mode

• Crystal oscillator power-up / power-down • Receive / transmit mode • RF channel selection • Data rate • Modulation format

• RX channel filter bandwidth • RF output power

• Data buffering with separate -byte

receive and transmit FIFOs • Packet radio hardware support

SWRS038C Figure 5 shows a simplified state diagram that explains the main CC1100 states, together with typical usage and current consumption. For detailed information on controlling the CC1100 state machine, and a complete state diagram, see Section 19, starting on page 42.

Page 22 of 96

SIDLE

SPWD or wake-on-radio (WOR) CC1100 SleepLowest power mode. Most register values are retained. Current consumption typ 400 nA, or typ 900 nA when wake-on-radio (WOR) is enabled. Default state when the radio is not receiving or transmitting. Typ. current consumption: 1.6 mA.CSn = 0IDLESXOFFSCALUsed for calibrating frequency synthesizer upfront (entering CSn = 0receive or transmit mode can Manual freq. then be done quicker). synth. calibrationSRX or STX or SFSTXON or wake-on-radio (WOR)Transitional state. Typ. current consumption: 8.2 mA.

Crystal oscillator offAll register values are retained. Typ. current consumption; 0.16 mA.SFSTXONFrequency synthesizer is on, ready to start transmitting.

Frequency Transmission starts very

synthesizer onquickly after receiving the STX command strobe.Typ. current consumption: 8.2 mA.

STXTXOFF_MODE = 01Frequency synthesizer startup, optional calibration, settlingFrequency synthesizer is turned on, can optionally be calibrated, and then settles to the correct frequency. Transitional state. Typ. current consumption: 8.2 mA. STXSRX or wake-on-radio (WOR)SFSTXON or RXOFF_MODE = 01Typ. current consumption:13.5 mA at -6 dBm output,16.9 mA at 0 dBm output,30.7 mA at +10 dBm output.

Transmit modeSTX or RXOFF_MODE=10Receive modeSRX or TXOFF_MODE = 11Typ. current consumption:

from 14.4 mA (strong input signal) to 15.4mA (weak input signal).

TXOFF_MODE = 00RXOFF_MODE = 00In FIFO-based modes,

transmission is turned off and this state entered if the TX FIFO becomes empty in the middle of a packet. Typ.

current consumption: 1.6 mA. Optional transitional state. Typ. current consumption: 8.2mA.TX FIFO underflowOptional freq. synth. calibrationRX FIFO overflowIn FIFO-based modes, reception is turned off and thisstate entered if the RX FIFO overflows. Typ. current consumption: 1.6 mA. SFTXSFRXIDLE

Figure 5: Simplified State Diagram, with Typical Current Consumption at 1.2 kBaud Data Rate

and MDMCFG2.DEM_DCFILT_OFF=1 (current optimized). Freq. Band = 868 MHz

SWRS038C Page 23 of 96

®

CC1100 After chip reset, all the registers have default values as shown in the tables in Section 33. The optimum register setting might differ from the default value. After a reset all registers that shall be different from the default value therefore needs to be programmed through the SPI interface.

9 Configuration Software

CC1100 can be configured using the SmartRF® Studio software [7]. The SmartRF Studio software is highly recommended for obtaining optimum register settings, and for evaluating performance and functionality. A screenshot of the SmartRF® Studio user interface for CC1100 is shown in Figure 6.

Figure 6: SmartRF® Studio [7] User Interface

10 4-wire Serial Configuration and Data Interface

CC1100 is configured via a simple 4-wire SPI-compatible interface (SI, SO, SCLK and CSn)

where CC1100 is the slave. This interface is also used to read and write buffered data. All transfers on the SPI interface are done most significant bit first.

All transactions on the SPI interface start with a header byte containing a R/W¯ bit, a burst access bit (B), and a 6-bit address (A5 – A0).

The CSn pin must be kept low during transfers on the SPI bus. If CSn goes high during the transfer of a header byte or during read/write from/to a register, the transfer will be cancelled. The timing for the address and data transfer on the SPI interface is shown in Figure 7 with reference to Table 16.

When CSn is pulled low, the MCU must wait until CC1100 SO pin goes low before starting to transfer the header byte. This indicates that the crystal is running. Unless the chip was in

SWRS038C Page 24 of 96

low.

CC1100 the SLEEP or XOFF states, the SO pin will always go low immediately after taking CSn

Figure 7: Configuration Registers Write and Read Operations

Parameter fSCLK

Description SCLK frequency

100 ns delay inserted between address byte and data byte (single access), or between address and data, and between each data byte (burst access).

Min Max

Units

- 10 MHz

SCLK frequency, single access

No delay between address and data byte

- 9 - 6.5 150 20 50 50 - -

Single access Burst access

55 76 20 20

- - - - 5 5 - - - -

ns ns

SCLK frequency, burst access

No delay between address and data byte, or between data bytes

tsp,pd tsp tch tcl trise tfall tsd

CSn low to positive edge on SCLK, in power-down mode CSn low to positive edge on SCLK, in active mode Clock high Clock low Clock rise time Clock fall time

Setup data (negative SCLK edge) to

positive edge on SCLK

(tsd applies between address and data bytes, and between data bytes)

µs ns ns ns ns ns ns

thd tns

Hold data after positive edge on SCLK Negative edge on SCLK to CSn high.

Table 16: SPI Interface Timing Requirements

Note: The minimum tsp,pd figure in Table 16 can be used in cases where the user does not read the CHIP_RDYn signal. CSn low to positive edge on SCLK when the chip is woken from power-down depends on the start-up time of the crystal being used. The 150 us in Table 16 is the crystal oscillator start-up time measured on CC1100EM reference designs ( [5] and [6]) using crystal AT-41CD2 from NDK.

SWRS038C Page 25 of 96

10.1 Chip Status Byte

CC1100 when the chip is in receive mode. Likewise, TX

is active when the chip is transmitting.

The last four bits (3:0) in the status byte con-tains FIFO_BYTES_AVAILABLE. For read operations (the R/W¯ bit in the header byte is set to 1), the FIFO_BYTES_AVAILABLE field contains the number of bytes available for reading from the RX FIFO. For write operations (the R/W¯ bit in the header byte is set to 0), the FIFO_BYTES_AVAILABLE field contains the number of bytes that can be written to the TX FIFO. When FIFO_BYTES_AVAILABLE=15, 15 or more bytes are available/free.

Table 17 gives a status byte summary.

When the header byte, data byte, or command strobe is sent on the SPI interface, the chip status byte is sent by the CC1100 on the SO pin. The status byte contains key status signals, useful for the MCU. The first bit, s7, is the CHIP_RDYn signal; this signal must go low before the first positive edge of SCLK. The CHIP_RDYn signal indicates that the crystal is running.

Bits 6, 5, and 4 comprise the STATE value. This value reflects the state of the chip. The XOSC and power to the digital core is on in the IDLE state, but all other modules are in power down. The frequency and channel configuration should only be updated when the chip is in this state. The RX state will be active

Bits 7 6:4

Name CHIP_RDYn STATE[2:0]

Description

Stays high until power and crystal have stabilized. Should always be low when using the SPI interface.

Indicates the current main state machine mode Value State 000 IDLE Description IDLE state

(Also reported for some transitional states instead of SETTLING or CALIBRATE)

001 RX 010 TX 011 100 101 110 111

3:0

FIFO_BYTES_AVAILABLE[3:0]

FSTXON CALIBRATE SETTLING

RXFIFO_OVERFLOW TXFIFO_UNDERFLOW

Receive mode Transmit mode Fast TX ready

Frequency synthesizer calibration is running PLL is settling

RX FIFO has overflowed. Read out any useful data, then flush the FIFO with SFRX TX FIFO has underflowed. Acknowledge with SFTX

The number of bytes available in the RX FIFO or free bytes in the TX FIFO

Table 17: Status Byte Summary

10.2 Register Access

The configuration registers on the CC1100 are located on SPI addresses from 0x00 to 0x2E. Table 36 on page 61 lists all configuration registers. It is highly recommended to use SmartRF® Studio [7] to generate optimum register settings. The detailed description of each register is found in Section 33.1 and 33.2, starting on page . All configuration

registers can be both written to and read. The R/W¯ bit controls if the register should be written to or read. When writing to registers,

the status byte is sent on the SO pin each time a header byte or data byte is transmitted on the SI pin. When reading from registers, the status byte is sent on the SO pin each time a header byte is transmitted on the SI pin. Registers with consecutive addresses can be accessed in an efficient way by setting the burst bit (B) in the header byte. The address bits (A5 – A0) set the start address in an internal address counter. This counter is incremented by one each new byte (every 8 clock pulses). The burst access is either a

Page 26 of 96

SWRS038C

read or a write access and must be terminated by setting CSn high.

For register addresses in the range 0x30-0x3D, the burst bit is used to select between status registers, burst bit is one, and command strobes, burst bit is zero (see 10.4 below). Because of this, burst access is not available for status registers and they must be accesses one at a time. The status registers can only be read.

10.3 SPI Read

When reading register fields over the SPI interface while the register fields are updated by the radio hardware (e.g. MARCSTATE or TXBYTES), there is a small, but finite, probability that a single read from the register is being corrupt. As an example, the probability of any single read from TXBYTES being corrupt, assuming the maximum data rate is used, is approximately 80 ppm. Refer to the CC1100 Errata Notes [1] for more details. 10.4 Command Strobes

Command Strobes may be viewed as single byte instructions to CC1100. By addressing a command strobe register, internal sequences will be started. These commands are used to disable the crystal oscillator, enable receive mode, enable wake-on-radio etc. The 13 command strobes are listed in Table 35 on page 60.

The command strobe registers are accessed by transferring a single header byte (no data is being transferred). That is, only the R/W¯ bit, the burst access bit (set to 0), and the six address bits (in the range 0x30 through 0x3D) are written. The R/W¯ bit can be either one or zero and will determine how the FIFO_BYTES_AVAILABLE field in the status byte should be interpreted.

When writing command strobes, the status byte is sent on the SO pin.

A command strobe may be followed by any other SPI access without pulling CSn high. However, if an SRES strobe is being issued, one will have to waith for SO to go low again before the next header byte can be issued as shown in Figure 8. The command strobes are executed immediately, with the exception of the SPWD and the SXOFF strobes that are executed when CSn goes high.

SWRS038C CC1100 Figure 8: SRES Command Strobe

10.5 FIFO Access

The -byte TX FIFO and the -byte RX FIFO are accessed through the 0x3F address. When the R/W¯ bit is zero, the TX FIFO is accessed, and the RX FIFO is accessed when the R/W¯ bit is one. The TX FIFO is write-only, while the RX FIFO is read-only.

The burst bit is used to determine if the FIFO access is a single byte access or a burst access. The single byte access method expects a header byte with the burst bit set to zero and one data byte. After the data byte a new header byte is expected; hence, CSn can remain low. The burst access method expects one header byte and then consecutive data bytes until terminating the access by setting CSn high.

The following header bytes access the FIFOs: • 0x3F: Single byte access to TX FIFO • 0x7F: Burst access to TX FIFO • 0xBF: Single byte access to RX FIFO •

0xFF: Burst access to RX FIFO

When writing to the TX FIFO, the status byte (see Section 10.1) is output for each new data byte on SO, as shown in Figure 7. This status byte can be used to detect TX FIFO underflow while writing data to the TX FIFO. Note that the status byte contains the number of bytes free before writing the byte in progress to the TX FIFO. When the last byte that fits in the TX FIFO is transmitted on SI, the status byte received concurrently on SO will indicate that one byte is free in the TX FIFO.

The TX FIFO may be flushed by issuing a SFTX command strobe. Similarly, a SFRX command strobe will flush the RX FIFO. A SFTX or SFRX command strobe can only be issued in the IDLE, TXFIFO_UNDERLOW, or RXFIFO_OVERFLOW states. Both FIFOs are flushed when going to the SLEEP state. Figure 9 gives a brief overview of different register access types possible.

Page 27 of 96

10.6 PATABLE Access

CC1100 written and read from the lowest setting (0) to

the highest (7), one byte at a time. An index counter is used to control the access to the table. This counter is incremented each time a byte is read or written to the table, and set to the lowest index when CSn is high. When the highest value is reached the counter restarts at zero.

The access to the PATABLE is either single byte or burst access depending on the burst bit. When using burst access the index counter will count up; when reaching 7 the counter will restart at 0. The R/W¯ bit controls whether the access is a read or a write access.

If one byte is written to the PATABLE and this value is to be read out then CSn must be set high before the read access in order to set the index counter back to zero.

Note that the content of the PATABLE is lost when entering the SLEEP state, except for the first byte (index 0).

The 0x3E address is used to access the PATABLE, which is used for selecting PA power control settings. The SPI expects up to eight data bytes after receiving the address. By programming the PATABLE, controlled PA power ramp-up and ramp-down can be achieved, as well as ASK modulation shaping for reduced bandwidth. Note that both the ASK modulation shaping and the PA ramping is limited to output powers up to -1 dBm, and the PATABLE settings allowed are 0x00 and 0x30 to 0x3F. See SmartRF® Studio [7] for recommended shaping / PA ramping sequences.

See Section 24 on page 49 for details on output power programming.

The PATABLE is an 8-byte table that defines the PA control settings to use for each of the eight PA power values (selected by the 3-bit value FREND0.PA_POWER). The table is

Figure 9: Register Access Types

11 Microcontroller Interface and Pin Configuration

In a typical system, CC1100 will interface to a microcontroller. This microcontroller must be able to:

(GDO1) that can output internal status information useful for control software. These pins can be used to generate interrupts on the MCU. See Section 30 page 55 for more details on the signals that can be programmed. GDO1 is shared with the SO pin in the SPI interface. The default setting for GDO1/SO is 3-state output. By selecting any other of the programming options, the GDO1/SO pin will become a generic pin. When CSn is low, the pin will always function as a normal SO pin. In the synchronous and asynchronous serial modes, the GDO0 pin is used as a serial TX data input pin while in transmit mode.

The GDO0 pin can also be used for an on-chip analog temperature sensor. By measuring the voltage on the GDO0 pin with an external ADC, the temperature can be calculated. Specifications for the temperature sensor are found in Section 4.7 on page 16.

CC1100 into different modes • Program

• Read and write buffered data

• Read back status information via the 4-wire

SPI-bus configuration interface (SI, SO, SCLK and CSn). 11.1 Configuration Interface

The microcontroller uses four I/O pins for the SPI configuration interface (SI, SO, SCLK and CSn). The SPI is described in Section 10 on page 24.

11.2 General Control and Status Pins The CC1100 has two dedicated configurable pins (GDO0 and GDO2) and one shared pin

SWRS038C Page 28 of 96

CC1100 latched and a command strobe is generated internally according to the pin configuration. It is only possible to change state with this functionality. That means that for instance RX will not be restarted if SI and SCLK are set to RX and CSn toggles. When CSn is low the SI and SCLK has normal SPI functionality. All pin control command strobes are executed immediately, except the SPWD strobe, which is delayed until CSn goes high.

CSn

SCLK

SI

Function

With default PTEST register setting (0x7F) the temperature sensor output is only available when the frequency synthesizer is enabled (e.g. the MANCAL, FSTXON, RX, and TX states). It is necessary to write 0xBF to the PTEST register to use the analog temperature sensor in the IDLE state. Before leaving the IDLE state, the PTEST register should be restored to its default value (0x7F). 11.3 Optional Radio Control Feature The CC1100 has an optional way of controlling the radio, by reusing SI, SCLK, and CSn from the SPI interface. This feature allows for a simple three-pin control of the major states of the radio: SLEEP, IDLE, RX, and TX.

This optional functionality is enabled with the MCSM0.PIN_CTRL_EN configuration bit. State changes are commanded as follows: When CSn is high the SI and SCLK is set to the desired state according to Table 18. When CSn goes low the state of SI and SCLK is

1 X X Chip unaffected by SCLK/SI ↓ ↓ ↓ ↓ 0

0 0 Generates SPWD strobe 0 1 Generates STX strobe 1 0 Generates SIDLE strobe 1 1 Generates SRX strobe SPI mode

SPI mode

SPI mode (wakes up into IDLE if in SLEEP/XOFF)

Table 18: Optional Pin Control Coding

12 Data Rate Programming

The data rate used when transmitting, or the data rate expected in receive is programmed by the MDMCFG3.DRATE_M and the MDMCFG4.DRATE_E configuration registers. The data rate is given by the formula below. As the formula shows, the programmed data rate depends on the crystal frequency.

If DRATE_M is rounded to the nearest integer and becomes 256, increment DRATE_E and use DRATE_M = 0.

The data rate can be set from 1.2 kBaud to 500 kBaud with the minimum step size of:

Min Data Rate [kBaud] 0.8

Typical Data

Rate [kBaud] 1.2 / 2.4

Max Data Rate [kBaud] 3.17

Data rate Step Size [kBaud] 0.0062

RDATA

(256+DRATE_M)⋅2DRATE_E=⋅f

2

28

XOSC

3.17 4.8 6.35 0.0124 6.35 9.6 12.7 0.0248 12.7 19.6 25.4 0.0496 25.4 38.4 50.8 0.0992 50.8 76.8 101.6 0.1984 The following approach can be used to find suitable values for a given data rate:

⎢⎛RDATA⋅220⎞⎥

⎟DRATE_E=⎢log2⎜⎜f⎟⎥

⎢XOSC⎝⎠⎥⎣⎦DRATE_M=

RDATA⋅2

−256

fXOSC⋅2DRATE_E

28

101.6 153.6 203.1 0.3967 203.1 250 406.3 0.7935 406.3 500 500 1.5869 Table 19: Data Rate Step Size

SWRS038C Page 29 of 96

CC1100 For best performance, the channel filter bandwidth should be selected so that the signal bandwidth occupies at most 80% of the channel filter bandwidth. The channel centre tolerance due to crystal accuracy should also be subtracted from the signal bandwidth. The following example illustrates this:

With the channel filter bandwidth set to 500 kHz, the signal should stay within 80% of

500 kHz, which is 400 kHz. Assuming 915 MHz frequency and ±20 ppm frequency uncertainty for both the transmitting device and the receiving device, the total frequency uncertainty is ±40 ppm of 915MHz, which is ±37 kHz. If the whole transmitted signal bandwidth is to be received within 400kHz, the transmitted signal bandwidth should be maximum 400kHz – 2·37 kHz, which is 326 kHz.

13 Receiver Channel Filter Bandwidth

In order to meet different channel width requirements, the receiver channel filter is programmable. The MDMCFG4.CHANBW_E and MDMCFG4.CHANBW_M configuration registers control the receiver channel filter bandwidth, which scales with the crystal oscillator frequency. The following formula gives the relation between the register settings and the channel filter bandwidth:

BWchannel=

fXOSC

CHANBW_E

8⋅(4+CHANBW_M)·2

The CC1100 supports the following channel filter bandwidths:

MDMCFG4. CHANBW_M

00 01 10 11

00

MDMCFG4.CHANBW_E

01

10

11

812 406 203 102 650 325 162 81 1 270 135 68 4 232 116 58 Table 20: Channel Filter Bandwidths [kHz]

(Assuming a 26MHz crystal)

14 Demodulator, Symbol Synchronizer, and Data Decision

CC1100 contains an advanced and highly configurable demodulator. Channel filtering and frequency offset compensation is performed digitally. To generate the RSSI level (see Section 17.3 for more information) the signal level in the channel is estimated. Data filtering is also included for enhanced performance.

14.1 Frequency Offset Compensation

When using 2-FSK, GFSK, or MSK modulation, the demodulator will compensate for the offset between the transmitter and receiver frequency, within certain limits, by estimating the centre of the received data. This value is available in the FREQEST status register. Writing the value from FREQEST into FSCTRL0.FREQOFF the frequency synthesizer is automatically adjusted according to the estimated frequency offset. The tracking range of the algorithm is selectable as fractions of the channel bandwidth with the FOCCFG.FOC_LIMIT configuration register.

If the FOCCFG.FOC_BS_CS_GATE bit is set, the offset compensator will freeze until carrier sense asserts. This may be useful when the radio is in RX for long periods with no traffic, since the algorithm may drift to the boundaries when trying to track noise.

The tracking loop has two gain factors, which affects the settling time and noise sensitivity of the algorithm. FOCCFG.FOC_PRE_K sets the gain before the sync word is detected, and FOCCFG.FOC_POST_K selects the gain after the sync word has been found.

Note that frequency offset compensation is not supported for ASK or OOK modulation. 14.2 Bit Synchronization

The bit synchronization algorithm extracts the clock from the incoming symbols. The algorithm requires that the expected data rate is programmed as described in Section 12 on page 29. Re-synchronization is performed continuously to adjust for error in the incoming symbol rate.

SWRS038C Page 30 of 96

14.3 Byte Synchronization

Byte synchronization is achieved by a

continuous sync word search. The sync word is a 16 bit configurable field (can be repeated to get a 32 bit) that is automatically inserted at the start of the packet by the modulator in transmit mode. The demodulator uses this field to find the byte boundaries in the stream of bits. The sync word will also function as a system identifier, since only packets with the correct predefined sync word will be received if the sync word detection in RX is enabled in

register MDMCFG2 (see Section 1

7.1). The sync word detector correlates against the user-configured 16 or 32 bit sync word. The correlation threshold can be set to 15/16,

15 Packet Handling Hardware Support

The CC1100 has built-in hardware support for packet oriented radio protocols.

In transmit mode, the packet handler can be configured to add the following elements to the packet stored in the TX FIFO:

• A programmable number of preamble

bytes

• A two byte synchronization (sync) word.

Can be duplicated to give a 4-byte sync word (recommended). It is not possible to only insert preamble or only insert a sync word.

• A CRC checksum computed over the

data field. •

• The recommended setting is 4-byte

preamble and 4-byte sync word, except for 500 kBaud data rate where the recommended preamble length is 8 bytes. •

• In addition, the following can be

implemented on the data field and the optional 2-byte CRC checksum: •

• Whitening of the data with a PN9

sequence.

• Forward error correction by the use of

interleaving and coding of the data (convolutional coding). •

In receive mode, the packet handling support will de-construct the data packet by implementing the following (if enabled): • Preamble detection. • Sync word detection.

• CRC computation and CRC check. • One byte address check.

SWRS038C

CC1100 16/16, or 30/32 bits match. The sync word can

be further qualified using the preamble quality indicator mechanism described below and/or a carrier sense condition. The sync word is configured through the SYNC1 and SYNC0 registers.

In order to make false detections of sync words less likely, a mechanism called preamble quality indication (PQI) can be used to qualify the sync word. A threshold value for the preamble quality must be exceeded in order for a detected sync word to be accepted. See Section 17.2 on page 37 for more details.

Packet length check (length byte checked against a programmable maximum length).

• De-whitening

• De-interleaving and decoding

• Optionally, two status bytes (see Table 21

and Table 22) with RSSI value, Link Quality Indication, and CRC status can be appended in the RX FIFO. •

Bit

Field Name

Description 7:0 RSSI RSSI value

Table 21: Received Packet Status Byte 1

(first byte appended after the data)

Bit Field Name Description

7

CRC_OK

1: CRC for received data OK (or CRC disabled)

0: CRC error in received data

6:0

LQI

Indicating the link quality

Table 22: Received Packet Status Byte 2 (second byte appended after the data) •

Note that register fields that control the packet handling features should only be altered when CC1100 is in the IDLE state.

15.1 Data Whitening

From a radio perspective, the ideal over the air data are random and DC free. This results in the smoothest power distribution over the occupied bandwidth. This also gives the regulation loops in the receiver uniform operation conditions (no data dependencies).

Page 31 of 96

CC1100 XOR-ed with a 9-bit pseudo-random (PN9) Real world data often contain long sequences

sequence before being transmitted, as shown of zeros and ones. Performance can then be

in Figure 10. At the receiver end, the data are improved by whitening the data before

XOR-ed with the same pseudo-random transmitting, and de-whitening the data in the

sequence. This way, the whitening is reversed, receiver. With CC1100, this can be done

and the original data appear in the receiver. automatically by setting The PN9 sequence is initialized to all 1’s. PKTCTRL0.WHITE_DATA=1. All data, except

the preamble and the sync word, are then

Figure 10: Data Whitening in TX Mode

15.2 Packet Format

The format of the data packet can be configured and consists of the following items (see Figure 11):

• Preamble

• Synchronization word

Optional data whiteningOptionally FEC encoded/decodedOptional CRC-16 calculationAddress fieldLength fieldSync wordCRC-16• Optional length byte • Optional address byte • Payload

• Optional 2 byte CRC •

Legend:

Inserted automatically in TX,processed and removed in RX.

Optional user-provided fields processed in TX,processed but not removed in RX.Unprocessed user data (apart from FECand/or whitening)

Preamble bits(1010...1010)Data field8 x n bits16/32 bits8bits8bits8 x n bits16 bits Figure 11: Packet Format

The preamble pattern is an alternating sequence of ones and zeros (10101010…). The minimum length of the preamble is programmable. When enabling TX, the modulator will start transmitting the preamble.

When the programmed number of preamble bytes has been transmitted, the modulator will send the sync word and then data from the TX FIFO if data is available. If the TX FIFO is empty, the modulator will continue to send

Page 32 of 96

SWRS038C

preamble bytes until the first byte is written to the TX FIFO. The modulator will then send the sync word and then the data bytes. The number of preamble bytes is programmed with the MDMCFG1.NUM_PREAMBLE value.

The synchronization word is a two-byte value set in the SYNC1 and SYNC0 registers. The sync word provides byte synchronization of the incoming packet. A one-byte synch word can be emulated by setting the SYNC1 value to the preamble pattern. It is also possible to emulate a 32 bit sync word by using MDMCFG2.SYNC_MODE set to 3 or 7. The sync word will then be repeated twice.

CC1100 supports both constant packet length protocols and variable length protocols. Variable or fixed packet length mode can be used for packets up to 255 bytes. For longer packets, infinite packet length mode must be used.

Fixed packet length mode is selected by setting PKTCTRL0.LENGTH_CONFIG=0. The desired packet length is set by the PKTLEN register.

In variable packet length mode, PKTCTRL0.LENGTH_CONFIG=1, the packet length is configured by the first byte after the sync word. The packet length is defined as the payload data, excluding the length byte and the optional CRC. The PKTLEN register is used to set the maximum packet length allowed in RX. Any packet received with a length byte with a value greater than PKTLEN will be discarded.

With PKTCTRL0.LENGTH_CONFIG=2, the packet length is set to infinite and transmission and reception will continue until turned off manually. As described in the next section, this can be used to support packet formats with different length configuration than natively supported by CC1100. One should make sure that TX mode is not turned off during the transmission of the first half of any byte. Refer

to the CC1100 Errata Notes

[1] for more details. Note that the minimum packet length

supported (excluding the optional length byte and CRC) is one byte of payload data. 15.2.1 Arbitrary Length Field Configuration The packet length register, PKTLEN, can be reprogrammed during receive and transmit. In combination with fixed packet length mode

SWRS038C CC1100 (PKTCTRL0.LENGTH_CONFIG=0) this opens the possibility to have a different length field configuration than supported for variable length packets (in variable packet length mode the length byte is the first byte after the sync word). At the start of reception, the packet length is set to a large value. The MCU reads out enough bytes to interpret the length field in the packet. Then the PKTLEN value is set according to this value. The end of packet will occur when the byte counter in the packet handler is equal to the PKTLEN register. Thus, the MCU must be able to program the correct length, before the internal counter reaches the packet length.

15.2.2 Packet Length > 255

Also the packet automation control register, PKTCTRL0, can be reprogrammed during TX and RX. This opens the possibility to transmit and receive packets that are longer than 256 bytes and still be able to use the packet handling hardware support. At the start of the packet, the infinite packet length mode (PKTCTRL0.LENGTH_CONFIG=2) must be active. On the TX side, the PKTLEN register is set to mod(length, 256). On the RX side the MCU reads out enough bytes to interpret the length field in the packet and sets the PKTLEN register to mod(length, 256). When less than 256 bytes remains of the packet the MCU disables infinite packet length mode and activates fixed packet length mode. When the internal byte counter reaches the PKTLEN value, the transmission or reception ends (the radio enters the state determined by TXOFF_MODE or RXOFF_MODE). Automatic CRC appending/checking can also be used (by setting PKTCTRL0.CRC_EN=1).

When for example a 600-byte packet is to be transmitted, the MCU should do the following (see also Figure 12)

• Set PKTCTRL0.LENGTH_CONFIG=2. • Pre-program the PKTLEN register to

mod(600, 256) = 88. •

Transmit at least 345 bytes (600 - 255), for example by filling the -byte TX FIFO six times (384 bytes transmitted).

• Set PKTCTRL0.LENGTH_CONFIG=0. • The transmission ends when the packet

counter reaches 88. A total of 600 bytes are transmitted.

Page 33 of 96

CC1100 Internal byte counter in packet handler counts from 0 to 255 and then starts at 0 again

0,1,..........,88,....................255,0,........,88,..................,255,0,........,88,..................,255,0,.......................

Infinite packet length enabledFixed packet length enabled when less than 256 bytes remains of packet600 bytes transmitted and receivedLength field transmitted and received. Rx and Tx PKTLEN value set to mod(600,256) = 88 Figure 12: Packet Length > 255

15.3 Packet Filtering in Receive Mode

CC1100 supports three different types of packet-filtering; address filtering, maximum length filtering, and CRC filtering. 15.3.1 Address Filtering

Setting PKTCTRL1.ADR_CHK to any other value than zero enables the packet address filter. The packet handler engine will compare the destination address byte in the packet with the programmed node address in the ADDR register and the 0x00 broadcast address when PKTCTRL1.ADR_CHK=10 or both 0x00 and 0xFF broadcast addresses when PKTCTRL1.ADR_CHK=11. If the received address matches a valid address, the packet is received and written into the RX FIFO. If the address match fails, the packet is discarded and receive mode restarted (regardless of the MCSM1.RXOFF_MODE setting).

If the received address matches a valid address when using infinite packet length mode and address filtering is enabled, 0xFF will be written into the RX FIFO followed by the address byte and then the payload data.

FIFO if the CRC check fails. After auto flushing the RX FIFO, the next state depends on the MCSM1.RXOFF_MODE setting.

When using the auto flush function, the maximum packet length is 63 bytes in variable packet length mode and bytes in fixed packet length mode. Note that the maximum allowed packet length is reduced by two bytes when PKTCTRL1.APPEND_STATUS is enabled, to make room in the RX FIFO for the two status bytes appended at the end of the packet. Since the entire RX FIFO is flushed when the CRC check fails, the previously received packet must be read out of the FIFO before receiving the current packet. The MCU must not read from the current packet until the CRC has been checked as OK.

15.4 Packet Handling in Transmit Mode

The payload that is to be transmitted must be written into the TX FIFO. The first byte written must be the length byte when variable packet length is enabled. The length byte has a value equal to the payload of the packet (including the optional address byte). If address

15.3.2 Maximum Length Filtering recognition is enabled on the receiver, the

second byte written to the TX FIFO must be In variable packet length mode, the address byte. If fixed packet length is PKTCTRL0.LENGTH_CONFIG=1, the enabled, then the first byte written to the TX

PKTLEN.PACKET_LENGTH register value is

FIFO should be the address (if the receiver

used to set the maximum allowed packet

uses address recognition).

length. If the received length byte has a larger value than this, the packet is discarded and The modulator will first send the programmed receive mode restarted (regardless of the number of preamble bytes. If data is available

in the TX FIFO, the modulator will send the MCSM1.RXOFF_MODE setting).

two-byte (optionally 4-byte) sync word and then the payload in the TX FIFO. If CRC is 15.3.3 CRC Filtering

enabled, the checksum is calculated over all

The filtering of a packet when CRC check fails the data pulled from the TX FIFO and the is enabled by setting result is sent as two extra bytes following the PKTCTRL1.CRC_AUTOFLUSH=1. The CRC payload data. If the TX FIFO runs empty auto flush function will flush the entire RX before the complete packet has been

SWRS038C Page 34 of 96

transmitted, the radio will enter TXFIFO_UNDERFLOW state. The only way to exit this state is by issuing an SFTX strobe. Writing to the TX FIFO after it has underflowed will not restart TX mode.

If whitening is enabled, everything following the sync words will be whitened. This is done before the optional FEC/Interleaver stage. Whitening is enabled by setting PKTCTRL0.WHITE_DATA=1.

If FEC/Interleaving is enabled, everything following the sync words will be scrambled by the interleaver and FEC encoded before being modulated. FEC is enabled by setting MDMCFG1.FEC_EN=1.

15.5 Packet Handling in Receive Mode In receive mode, the demodulator and packet handler will search for a valid preamble and the sync word. When found, the demodulator has obtained both bit and byte synchronism and will receive the first payload byte.

If FEC/Interleaving is enabled, the FEC decoder will start to decode the first payload byte. The interleaver will de-scramble the bits before any other processing is done to the data.

If whitening is enabled, the data will be de-whitened at this stage.

When variable packet length mode is enabled, the first byte is the length byte. The packet handler stores this value as the packet length and receives the number of bytes indicated by the length byte. If fixed packet length mode is used, the packet handler will accept the programmed number of bytes.

Next, the packet handler optionally checks the address and only continues the reception if the address matches. If automatic CRC check is enabled, the packet handler computes CRC and matches it with the appended CRC checksum.

At the end of the payload, the packet handler will optionally write two extra packet status bytes (see Table 21 and Table 22) that contain CRC status, link quality indication, and RSSI value.

15.6 Packet Handling in Firmware

When implementing a packet oriented radio protocol in firmware, the MCU needs to know

SWRS038C CC1100 when a packet has been received/transmitted. Additionally, for packets longer than bytes the RX FIFO needs to be read while in RX and the TX FIFO needs to be refilled while in TX. This means that the MCU needs to know the number of bytes that can be read from or written to the RX FIFO and TX FIFO respectively. There are two possible solutions to get the necessary status information: a) Interrupt Driven Solution

In both RX and TX one can use one of the GDO pins to give an interrupt when a sync word has been received/transmitted and/or when a complete packet has been received/transmitted

(IOCFGx.GDOx_CFG=0x06). In addition, there

are 2 configurations for the IOCFGx.GDOx_CFG register that are associated with the RX FIFO

(IOCFGx.GDOx_CFG=0x00 and IOCFGx.GDOx_CFG=0x01) and two that are associated with the TX FIFO

(IOCFGx.GDOx_CFG=0x02 and IOCFGx.GDOx_CFG=0x03) that can be used as interrupt sources to provide information on how many bytes are in the RX FIFO and TX FIFO respectively. See Table 34. b) SPI Polling

The PKTSTATUS register can be polled at a given rate to get information about the current GDO2 and GDO0 values respectively. The RXBYTES and TXBYTES registers can be polled at a given rate to get information about the number of bytes in the RX FIFO and TX FIFO respectively. Alternatively, the number of bytes in the RX FIFO and TX FIFO can be read from the chip status byte returned on the MISO line each time a header byte, data byte, or command strobe is sent on the SPI bus. It is recommended to employ an interrupt driven solution as high rate SPI polling will reduce the RX sensitivity. Furthermore, as explained in Section 10.3 and the CC1100 Errata Notes [1], when using SPI polling there is a small, but finite, probability that a single read from registers PKTSTATUS , RXBYTES and TXBYTES is being corrupt. The same is the case when reading the chip status byte. Refer to the TI website for SW examples ( [8] and [9]).

Page 35 of 96

16 Modulation Formats

CC1100 supports amplitude, frequency, and phase shift modulation formats. The desired

modulation format is set in the MDMCFG2.MOD_FORMAT register.

Optionally, the data stream can be Manchester coded by the modulator and decoded by the demodulator. This option is enabled by setting MDMCFG2.MANCHESTER_EN=1. Manchester encoding is not supported at the same time as using the FEC/Interleaver option. 16.1 Frequency Shift Keying

2-FSK can optionally be shaped by a Gaussian filter with BT = 1, producing a GFSK modulated signal.

The frequency deviation is programmed with the DEVIATION_M and DEVIATION_E values in the DEVIATN register. The value has an exponent/mantissa form, and the resultant deviation is given by:

fdev

=fxosc⋅(8+DEVIATION_M)⋅2DEVIATION_E

2

17

The symbol encoding is shown in Table 23.

Format

Symbol

Coding 2-FSK/GFSK ‘0’ – Deviation

‘1’ + Deviation Table 23: Symbol Encoding for 2-FSK/GFSK

Modulation

SWRS038C CC1100 16.2 Minimum Shift Keying

When using MSK1, the complete transmission (preamble, sync word, and payload) will be MSK modulated.

Phase shifts are performed with a constant transition time.

The fraction of a symbol period used to change the phase can be modified with the DEVIATN.DEVIATION_M setting. This is equivalent to changing the shaping of the symbol.

CC1100The MSK modulation format implemented in inverts the sync word and data compared to e.g. signal generators. 16.3 Amplitude Modulation

CC1100 supports two different forms of amplitude modulation: On-Off Keying (OOK) and Amplitude Shift Keying (ASK).

OOK modulation simply turns on or off the PA to modulate 1 and 0 respectively.

The ASK variant supported by the CC1100 allows programming of the modulation depth (the difference between 1 and 0), and shaping of the pulse amplitude. Pulse shaping will produce a more bandwidth constrained output spectrum. Note that the pulse shaping feature on the CC1100 does only support output power up to about -1dBm. The PATABLE settings that can be used for pulse shaping are 0x00 and 0x30 to 0x3F.

1

Identical to offset QPSK with half-sine

shaping (data coding may differ)

Page 36 of 96

CC1100 17 Received Signal Qualifiers and Link Quality Information

CC1100 has several qualifiers that can be used to increase the likelihood that a valid sync

word is detected.

17.1 Sync Word Qualifier

If sync word detection in RX is enabled in register MDMCFG2 the CC1100 will not start filling the RX FIFO and perform the packet filtering described in Section 15.3 before a valid sync word has been detected. The sync word qualifier mode is set by MDMCFG2.SYNC_MODE and is summarized in Table 24. Carrier sense is described in Section 1 7.4.

MDMCFG2. Sync Word Qualifier Mode

SYNC_MODE

000 No preamble/sync 001 15/16 sync word bits detected 010 16/16 sync word bits detected 011 30/32 sync word bits detected 100 No preamble/sync, carrier sense

above threshold

101 15/16 + carrier sense above threshold 110 16/16 + carrier sense above threshold 111

30/32 + carrier sense above threshold Table 24: Sync Word Qualifier Mode 17.2 Preamble Quality Threshold (PQT) The Preamble Quality Threshold (PQT) sync-word qualifier adds the requirement that the received sync word must be preceded with a preamble with a quality above the programmed threshold.

Another use of the preamble quality threshold is as a qualifier for the optional RX termination timer. See Section 19.7 on page 46 for details. The preamble quality estimator increases an internal counter by one each time a bit is received that is different from the previous bit, and decreases the counter by 8 each time a bit is received that is the same as the last bit. The threshold is configured with the register field PKTCTRL1.PQT. A threshold of 4·PQT for this counter is used to gate sync word detection. By setting the value to zero, the preamble quality qualifier of the synch word is disabled.

SWRS038C

A “Preamble Quality Reached” signal can be observed on one of the GDO pins by setting IOCFGx.GDOx_CFG=8. It is also possible to determine if preamble quality is reached by checking the PQT_REACHED bit in the PKTSTATUS register. This signal / bit asserts when the received signal exceeds the PQT. 17.3 RSSI

The RSSI value is an estimate of the signal power level in the chosen channel. This value is based on the current gain setting in the RX chain and the measured signal level in the channel.

In RX mode, the RSSI value can be read continuously from the RSSI status register until the demodulator detects a sync word (when sync word detection is enabled). At that point the RSSI readout value is frozen until the next time the chip enters the RX state. The RSSI value is in dBm with ½dB resolution. The RSSI update rate, fRSSI, depends on the receiver filter bandwidth (BWchannel defined in Section 1 3) and AGCCTRL0.FILTER_LENGTH.

f⋅BWchannel

RSSI=

28⋅2FILTER_LENGTH

If PKTCTRL1.APPEND_STATUS is enabled the last RSSI value of the packet is automatically added to the first byte appended after the payload.

The RSSI value read from the RSSI status register is a 2’s complement number. The following procedure can be used to convert the RSSI reading to an absolute power level (RSSI_dBm).

1) Read the RSSI status register

2) Convert the reading from a hexadecimal

number to a decimal number (RSSI_dec) 3) If RSSI_dec ≥ 128 then RSSI_dBm =

(RSSI_dec - 256)/2 – RSSI_offset 4) Else if RSSI_dec < 128 then RSSI_dBm =

(RSSI_dec)/2 – RSSI_offset Table 25 gives typical values for the RSSI_offset.

Figure 13 and Figure 14 shows typical plots of RSSI reading as a function of input power level for different data rates.

Page 37 of 96

Data rate [kBaud]

1.2

75

CC1100 RSSI_offset [dB], 868 MHz

74

74 78 77 RSSI_offset [dB], 433 MHz

38.4 75 250 79 500 79 Table 25: Typical RSSI_offset Values

0-10-20-30-40-50-60-70-80-90-100-110-120 RSSI Readout [dBm] -120 -110 -100 -90 -80-70-60-50-40-30-20-10 0 Input Power [dBm] 1.2 kBuad38.4 kBaud250 kBaud500 kBaud

Figure 13: Typical RSSI Value vs. Input Power Level for Different Data Rates at 433 MHz

0-10-20-30 RSSI Readout [dBm]-40-50-60-70-80-90-100-110-120-120-110-100-90-80-70-60-50-40-30-20-100Input Power [dBm]1.2 kBaud38.4 kBuad250 kBaud500 kBaud

Figure 14: Typical RSSI Value vs. Input Power Level for Different Data Rates at 868 MHz

SWRS038C Page 38 of 96

17.4 Carrier Sense (CS)

CC1100 Studio to generate the correct MAGN_TARGET setting.

Table 26 and Table 27 show the typical RSSI readout values at the CS threshold at 2.4 kBaud and 250 kBaud data rate respectively. The default CARRIER_SENSE_ABS_THR=0 (0 dB) and MAGN_TARGET=3 (33 dB) have been used.

For other data rates the user must generate similar tables to find the CS absolute threshold.

00

MAX_DVGA_GAIN[1:0]

01

10

11

Carrier Sense (CS) is used as a sync word qualifier and for CCA and can be asserted based on two conditions, which can be individually adjusted:

• CS is asserted when the RSSI is above a

programmable absolute threshold, and de-asserted when RSSI is below the same threshold (with hysteresis). • CS is asserted when the RSSI has

increased with a programmable number of dB from one RSSI sample to the next, and de-asserted when RSSI has decreased with the same number of dB. This setting is not dependent on the absolute signal level and is thus useful to detect signals in environments with time varying noise floor. Carrier Sense can be used as a sync word qualifier that requires the signal level to be higher than the threshold for a sync word search to be performed. The signal can also be observed on one of the GDO pins by setting IOCFGx.GDOx_CFG=14 and in the status register bit PKTSTATUS.CS.

Other uses of Carrier Sense include the TX-if-CCA function (see Section 17.5 on page 40) and the optional fast RX termination (see Section 19.7 on page 46). CS can be used to avoid interference from other RF sources in the ISM bands. 17.4.1 CS Absolute Threshold

The absolute threshold related to the RSSI value depends on the following register fields: • • • •

AGCCTRL2.MAX_LNA_GAIN AGCCTRL2.MAX_DVGA_GAIN

AGCCTRL1.CARRIER_SENSE_ABS_THR AGCCTRL2.MAGN_TARGET

000 -97.5 -91.5 -85.5 -79.5 MAX_LNA_GAIN[2:0] 001 -94 -88 -82.5 -76 010 -90.5 -84.5 -78.5 -72.5 011 -88 -82.5 -76.5 -70.5 100 -85.5 -80 -73.5 -68 101 -84 -78 -72 -66 110 -82 -76 -70 - 111 -79 -73.5 -67 -61 Table 26: Typical RSSI Value in dBm at CS Threshold with Default MAGN_TARGET at 2.4

kBaud, 868 MHz

00

MAX_DVGA_GAIN[1:0]

01

10

11

000 -90.5 -84.5 -78.5 -72.5 MAX_LNA_GAIN[2:0] 001 -88 -82 -76 -70 010 -84.5 -78.5 -72 -66 011 -82.5 -76.5 -70 - 100 -80.5 -74.5 -68 -62 101 -78 -72 -66 -60 110 -76.5 -70 - -58 111 -74.5 -68 -62 -56 • For a given AGCCTRL2.MAX_LNA_GAIN and AGCCTRL2.MAX_DVGA_GAIN setting the Table 27: Typical RSSI Value in dBm at CS absolute threshold can be adjusted ±7 dB in Threshold with Default MAGN_TARGET at 250 steps of 1 dB using kBaud, 868 MHz CARRIER_SENSE_ABS_THR.

The MAGN_TARGET setting is a compromise

If the threshold is set high, i.e. only strong between blocker tolerance/selectivity and

signals are wanted, the threshold should be sensitivity. The value sets the desired signal

adjusted upwards by first reducing the level in the channel into the demodulator.

MAX_LNA_GAIN value and then the Increasing this value reduces the headroom

MAX_DVGA_GAIN value. This will reduce for blockers, and therefore close-in selectivity.

power consumption in the receiver front end, It is strongly recommended to use SmartRF®

since the highest gain settings are avoided.

SWRS038C

Page 39 of 96

17.4.2 CS Relative Threshold

• • • •

CC1100 feature is called TX-if-CCA. Four CCA

requirements can be programmed:

Always (CCA disabled, always goes to TX) If RSSI is below threshold

Unless currently receiving a packet Both the above (RSSI below threshold and not currently receiving a packet)

The relative threshold detects sudden changes in the measured signal level. This setting is not dependent on the absolute signal level and is thus useful to detect signals in environments with a time varying noise floor. The register field AGCCTRL1.CARRIER_SENSE_REL_THR is used to enable/disable relative CS, and to select threshold of 6 dB, 10 dB, or 14 dB RSSI change.

17.5 Clear Channel Assessment (CCA) The Clear Channel Assessment (CCA) is used to indicate if the current channel is free or busy. The current CCA state is viewable on any of the GDO pins by setting IOCFGx.GDOx_ CFG=0x09.

MCSM1.CCA_MODE selects the mode to use when determining CCA.

When the STX or SFSTXON command strobe is given while CC1100 is in the RX state, the TX or FSTXON state is only entered if the clear channel requirements are fulfilled. The chip will otherwise remain in RX (if the channel becomes available, the radio will not enter TX or FSTXON state before a new strobe command is sent on the SPI interface). This

17.6 Link Quality Indicator (LQI)

The Link Quality Indicator is a metric of the current quality of the received signal. If PKTCTRL1.APPEND_STATUS is enabled, the value is automatically added to the last byte appended after the payload. The value can also be read from the LQI status register. The LQI gives an estimate of how easily a received signal can be demodulated by accumulating the magnitude of the error between ideal constellations and the received signal over the symbols immediately following the sync word. LQI is best used as a relative measurement of the link quality (a high value indicates a better link than what a low value does), since the value is dependent on the modulation format.

18 Forward Error Correction with Interleaving

18.1 Forward Error Correction (FEC)

a given length, to be transmitted successfully. Finally, in realistic ISM radio environments, transient and time-varying phenomena will produce occasional errors even in otherwise good reception conditions. FEC will mask such errors and, combined with interleaving of the coded data, even correct relatively long periods of faulty reception (burst errors). The FEC scheme adopted for CC1100 is convolutional coding, in which n bits are generated based on k input bits and the m most recent input bits, forming a code stream able to withstand a certain number of bit errors between each coding state (the m-bit window). The convolutional coder is a rate 1/2 code with a constraint length of m = 4. The coder codes one input bit and produces two output bits; hence, the effective data rate is halved. I.e. to transmit at the same effective datarate when using FEC, it is necessary to use twice as high over-the-air datarate. This will require a higher receiver bandwidth, and thus reduce sensitivity. In other words the improved

CC1100 has built in support for Forward Error Correction (FEC). To enable this option, set MDMCFG1.FEC_EN to 1. FEC is only supported in fixed packet length mode (PKTCTRL0.LENGTH_CONFIG=0). FEC is employed on the data field and CRC word in order to reduce the gross bit error rate when operating near the sensitivity limit. Redundancy is added to the transmitted data in such a way that the receiver can restore the original data in the presence of some bit errors.

The use of FEC allows correct reception at a lower SNR, thus extending communication range if the receiver bandwidth remains constant. Alternatively, for a given SNR, using FEC decreases the bit error rate (BER). As the packet error rate (PER) is related to BER by:

PER=1−(1−BER)packet_length

a lower BER can be used to allow longer packets, or a higher percentage of packets of

SWRS038C Page 40 of 96

CC1100 receiver, the received symbols are written into the columns of the matrix, whereas the data passed onto the convolutional decoder is read from the rows of the matrix.

When FEC and interleaving is used at least one extra byte is required for trellis termination. In addition, the amount of data transmitted over the air must be a multiple of the size of the interleaver buffer (two bytes). The packet control hardware therefore automatically inserts one or two extra bytes at the end of the packet, so that the total length of the data to be interleaved is an even number. Note that these extra bytes are invisible to the user, as they are removed before the received packet enters the RX FIFO.

When FEC and interleaving is used the minimum data payload is 2 bytes.

reception by using FEC and the degraded sensitivity from a higher receiver bandwidth will be counteracting factors. 18.2 Interleaving

Data received through radio channels will often experience burst errors due to interference and time-varying signal strengths. In order to increase the robustness to errors spanning multiple bits, interleaving is used when FEC is enabled. After de-interleaving, a continuous span of errors in the received stream will become single errors spread apart.

CC1100 employs matrix interleaving, which is illustrated in Figure 15. The on-chip interleaving and de-interleaving buffers are 4 x 4 matrices. In the transmitter, the data bits from the rate ½ convolutional coder are written into the rows of the matrix, whereas the bit sequence to be transmitted is read from the columns of the matrix. Conversely, in the

InterleaverWrite bufferInterleaverRead bufferPacketEngineFECEncoderModulatorInterleaverWrite bufferInterleaverRead bufferDemodulatorFECDecoderPacketEngine

Figure 15: General Principle of Matrix Interleaving

SWRS038C Page 41 of 96

CC1100 19 Radio Control

SIDLESPWD | SWORCAL_COMPLETEMANCAL3,4,5SCALCSn = 0SRX | STX | SFSTXON | WORXOFF2IDLE1CSn = 0 | WORSXOFFSLEEP0FS_WAKEUP6,7FS_AUTOCAL = 01& SRX | STX | SFSTXON | WOR FS_AUTOCAL = 00 | 10 | 11&SRX | STX | SFSTXON | WORCALIBRATE8SFSTXONFSTXON18STXSETTLING9,10,11CAL_COMPLETESRX | WORSTXSRXTXOFF_MODE=01SFSTXON | RXOFF_MODE = 01STX | RXOFF_MODE = 10TXOFF_MODE = 10TX19,20RXTX_SETTLING21( STX | SFSTXON ) & CCA| RXOFF_MODE = 01 | 10RX13,14,15RXOFF_MODE = 11SRX | TXOFF_MODE = 11TXRX_SETTLING16RXOFF_MODE = 00& FS_AUTOCAL = 10 | 11CALIBRATE12TXFIFO_UNDERFLOWTXOFF_MODE = 00 & FS_AUTOCAL = 10 | 11TXOFF_MODE = 00& FS_AUTOCAL = 00 | 01RXFIFO_OVERFLOWTX_UNDERFLOW22RXOFF_MODE = 00&FS_AUTOCAL = 00 | 01RX_OVERFLOW17SFTXIDLE1SFRX Figure 16: Complete Radio Control State Diagram

CC1100 has a built-in state machine that is used to switch between different operational states (modes). The change of state is done either by using command strobes or by internal events such as TX FIFO underflow. A simplified state diagram, together with typical usage and current consumption, is shown in Figure 5 on page 23. The complete radio control state diagram is shown in Figure 16. The numbers refer to the state number readable in the MARCSTATE status register. This register is primarily for test purposes.

19.1 Power-On Start-Up Sequence

When the power supply is turned on, the system must be reset. This is achieved by one of the two sequences described below, i.e. automatic power-on reset (POR) or manual reset.

After the automatic power-on reset or manual reset it is also recommended to change the signal that is output on the GDO0 pin. The default setting is to output a clock signal with a frequency of CLK_XOSC/192, but to optimize

SWRS038C Page 42 of 96

performance in TX and RX an alternative GDO setting should be selected from the settings found in Table 34 on page 56. 19.1.1 Automatic POR

A power-on reset circuit is included in the CC1100. The minimum requirements stated in Table 12 must be followed for the power-on reset to function properly. The internal power-up sequence is completed when CHIP_RDYn goes low. CHIP_RDYn is observed on the SO pin after CSn is pulled low. See Section 10.1 for more details on CHIP_RDYn.

When the CC1100 reset is completed the chip will be in the IDLE state and the crystal oscillator will be running. If the chip has had sufficient time for the crystal oscillator to stabilize after the power-on-reset the SO pin will go low immediately after taking CSn low. If CSn is taken low before reset is completed the SO pin will first go high, indicating that the crystal oscillator is not stabilized, before going low as shown in Figure 17.

Figure 17: Power-On Reset

19.1.2 Manual Reset

The other global reset possibility on CC1100 uses the SRES command strobe. By issuing this strobe, all internal registers and states are set to the default, IDLE state. The manual power-up sequence is as follows (see Figure 18):

• Set SCLK = 1 and SI = 0, to avoid

potential problems with pin control mode (see Section 11.3 on page 29). •

Strobe CSn low / high.

• Hold CSn high for at least 40µs relative to pulling CSn low • Pull CSn low and wait for SO to go low

(CHIP_RDYn). • Issue the SRES strobe on the SI line. • When SO goes low again, reset is

complete and the chip is in the IDLE state.

SWRS038C CC1100 XOSC and voltage regulator switched on40 usCSnSO

XOSC StableSI

SRES Figure 18: Power-On Reset with SRES

Note that the above reset procedure is only required just after the power supply is first turned on. If the user wants to reset the CC1100 after this, it is only necessary to issue an SRES command strobe. 19.2 Crystal Control

The crystal oscillator (XOSC) is either automatically controlled or always on, if MCSM0.XOSC_FORCE_ON is set.

In the automatic mode, the XOSC will be turned off if the SXOFF or SPWD command strobes are issued; the state machine then goes to XOFF or SLEEP respectively. This can only be done from the IDLE state. The XOSC will be turned off when CSn is released (goes high). The XOSC will be automatically turned on again when CSn goes low. The state machine will then go to the IDLE state. The SO pin on the SPI interface must be pulled low before the SPI interface is ready to be used; as described in Section 10.1 on page 26.

If the XOSC is forced on, the crystal will always stay on even in the SLEEP state. Crystal oscillator start-up time depends on crystal ESR and load capacitances. The electrical specification for the crystal oscillator can be found in Section 4.4 on page 14. 19.3 Voltage Regulator Control

The voltage regulator to the digital core is controlled by the radio controller. When the chip enters the SLEEP state, which is the state with the lowest current consumption, the voltage regulator is disabled. This occurs after CSn is released when a SPWD command strobe has been sent on the SPI interface. The chip is now in the SLEEP state. Setting CSn

Page 43 of 96

low again will turn on the regulator and crystal oscillator and make the chip enter the IDLE state.

When wake on radio is enabled, the WOR module will control the voltage regulator as described in Section 19.5. 19.4 Active Modes

CC1100 has two active modes: receive and transmit. These modes are activated directly by the MCU by using the SRX and STX command strobes, or automatically by Wake on Radio.

The frequency synthesizer must be calibrated regularly. CC1100 has one manual calibration option (using the SCAL strobe), and three automatic calibration options, controlled by the MCSM0.FS_AUTOCAL setting:

• Calibrate when going from IDLE to either

RX or TX (or FSTXON) •

Calibrate when going from either RX or TX to IDLE automatically

• Calibrate every fourth time when going

from either RX or TX to IDLE automatically If the radio goes from TX or RX to IDLE by issuing an SIDLE strobe, calibration will not be performed. The calibration takes a constant number of XOSC cycles (see Table 28 for timing details).

When RX is activated, the chip will remain in receive mode until a packet is successfully received or the RX termination timer expires (see Section 19.7). Note: the probability that a false sync word is detected can be reduced by using PQT, CS, maximum sync word length, and sync word qualifier mode as described in Section 17. After a packet is successfully received the radio controller will then go to the state indicated by the MCSM1.RXOFF_MODE setting. The possible destinations are: • IDLE

• FSTXON: Frequency synthesizer on and

ready at the TX frequency. Activate TX with STX . • TX: Start sending preamble • RX: Start search for a new packet

Similarly, when TX is active the chip will remain in the TX state until the current packet

SWRS038C CC1100 has been successfully transmitted. Then the state will change as indicated by the MCSM1.TXOFF_MODE setting. The possible destinations are the same as for RX.

The MCU can manually change the state from RX to TX and vice versa by using the command strobes. If the radio controller is currently in transmit and the SRX strobe is used, the current transmission will be ended and the transition to RX will be done.

If the radio controller is in RX when the STX or SFSTXON command strobes are used, the TX-if-CCA function will be used. If the channel is not clear, the chip will remain in RX. The MCSM1.CCA_MODE setting controls the conditions for clear channel assessment. See Section 17.5 on page 40 for details. The SIDLE command strobe can always be used to force the radio controller to go to the IDLE state.

19.5 Wake On Radio (WOR)

The optional Wake on Radio (WOR) functionality enables CC1100 to periodically wake up from SLEEP and listen for incoming packets without MCU interaction.

When the WOR strobe command is sent on the SPI interface, the CC1100 will go to the SLEEP state when CSn is released. The RC oscillator must be enabled before the WOR strobe can be used, as it is the clock source for the WOR timer. The on-chip timer will set CC1100 into IDLE state and then RX state. After a programmable time in RX, the chip will go back to the SLEEP state, unless a packet is received. See Figure 19 and Section 19.7 for details on how the timeout works.

Set the CC1100 into the IDLE state to exit WOR mode.

CC1100 can be set up to signal the MCU that a packet has been received by using the GDO pins. If a packet is received, the MCSM1.RXOFF_MODE will determine the behaviour at the end of the received packet. When the MCU has read the packet, it can put the chip back into SLEEP with the SWOR strobe from the IDLE state. The FIFO will loose its contents in the SLEEP state.

The WOR timer has two events, Event 0 and Event 1. In the SLEEP state with WOR activated, reaching Event 0 will turn on the digital regulator and start the crystal oscillator.

Page 44 of 96

Event 1 follows Event 0 after a programmed

timeout.

The time between two consecutive Event 0 is programmed with a mantissa value given by WOREVT1.EVENT0 and WOREVT0.EVENT0, and an exponent value set by WORCTRL.WOR_RES. The equation is:

tEvent0=

750

f⋅EVENT0⋅25⋅WOR_RES XOSC

The Event 1 timeout is programmed with WORCTRL.EVENT1. Figure 19 shows the timing relationship between Event 0 timeout and Event 1 timeout.

Figure 19: Event 0 and Event 1 Relationship

The time from the CC1100 enters SLEEP state until the next Event0 is programmed to appear (tSLEEP in Figure 19) should be larger than 11.08 ms when using a 26 MHz crystal and 10.67 ms when a 27 MHz crystal is used. If tSLEEP is less than 11.08 (10.67) ms there is a chance that the consecutive Event 0 will occur

750

f⋅128 seconds XOSC

too early. Application Note AN047 [4] explains in detail the theory of operation and the different registers involved when using WOR, as well as highlighting important aspects when using WOR mode.

19.5.1 RC Oscillator and Timing

The frequency of the low-power RC oscillator used for the WOR functionality varies with temperature and supply voltage. In order to keep the frequency as accurate as possible, the RC oscillator will be calibrated whenever possible, which is when the XOSC is running and the chip is not in the SLEEP state. When the power and XOSC is enabled, the clock used by the WOR timer is a divided XOSC clock. When the chip goes to the sleep state,

SWRS038C CC1100 the RC oscillator will use the last valid calibration result. The frequency of the RC oscillator is locked to the main crystal frequency divided by 750.

In applications where the radio wakes up very often, typically several times every second, it is possible to do the RC oscillator calibration once and then turn off calibration (WORCTRL.RC_CAL=0) to reduce the current consumption. This requires that RC oscillator calibration values are read from registers RCCTRL0_STATUS and RCCTRL1_STATUS and written back to RCCTRL0 and RCCTRL1 respectively. If the RC oscillator calibration is turned off it will have to be manually turned on again if temperature and supply voltage changes.

Refer to Application Note AN047 [4] for further details. 19.6 Timing

The radio controller controls most of the timing in CC1100, such as synthesizer calibration, PLL lock time, and RX/TX turnaround times. Timing from IDLE to RX and IDLE to TX is constant, dependent on the auto calibration setting. RX/TX and TX/RX turnaround times are constant. The calibration time is constant 18739 clock periods. Table 28 shows timing in crystal clock cycles for key state transitions. Power on time and XOSC start-up times are variable, but within the limits stated in Table 7. Note that in a frequency hopping spread spectrum or a multi-channel protocol the calibration time can be reduced from 721 µs to approximately 150 µs. This is explained in Section 32.2.

Page 45 of 96

Description

XOSC 26 MHz Periods Crystal IDLE to RX, no calibration 2298 88.4µs IDLE to RX, with calibration ~21037

809µs

IDLE to TX/FSTXON, no 2298 88.4µs calibration

IDLE to TX/FSTXON, with ~21037 809µs calibration TX to RX switch 560 21.5µs RX to TX switch

250 9.6µs RX or TX to IDLE, no calibration 2 0.1µs RX or TX to IDLE, with calibration ~18739 721µs Manual calibration

~18739

721µs

Table 28: State Transition Timing

19.7 RX Termination Timer CC1100 has optional functions for automatic

termination of RX after a programmable time.

The main use for this functionality is wake-on-radio (WOR), but it may be useful for other

applications. The termination timer starts when

in RX state. The timeout is programmable with

the MCSM2.RX_TIME setting. When the timer

expires, the radio controller will check the

condition for staying in RX; if the condition is

not met, RX will terminate.

The programmable conditions are: • MCSM2.RX_TIME_QUAL=0: Continue receive if sync word has been found •

MCSM2.RX_TIME_QUAL=1: Continue receive if sync word has been found or preamble quality is above threshold (PQT)

20 Data FIFO

The CC1100 contains two byte FIFOs, one for received data and one for data to be transmitted. The SPI interface is used to read from the RX FIFO and write to the TX FIFO. Section 10.5 contains details on the SPI FIFO access. The FIFO controller will detect overflow in the RX FIFO and underflow in the TX FIFO.

When writing to the TX FIFO it is the responsibility of the MCU to avoid TX FIFO overflow. A TX FIFO overflow will result in an error in the TX FIFO content.

Likewise, when reading the RX FIFO the MCU must avoid reading the RX FIFO past its empty value, since an RX FIFO underflow will result in an error in the data read out of the RX FIFO.

SWRS038C CC1100 If the system can expect the transmission to have started when enabling the receiver, the MCSM2.RX_TIME_RSSI function can be used. The radio controller will then terminate RX if the first valid carrier sense sample indicates no carrier (RSSI below threshold). See Section 1

7.4 on page 39 for details on Carrier Sense. For ASK/OOK modulation, lack of carrier sense is only considered valid after eight

symbol periods. Thus, the MCSM2.RX_TIME_RSSI function can be used in ASK/OOK mode when the distance between “1” symbols is 8 or less.

If RX terminates due to no carrier sense when the MCSM2.RX_TIME_RSSI function is used, or if no sync word was found when using the MCSM2.RX_TIME timeout function, the chip

will always go back to IDLE if WOR is disabled

and back to SLEEP if WOR is enabled. Otherwise, the MCSM1.RXOFF_MODE setting determines the state to go to when RX ends. This means that the chip will not automatically go back to SLEEP once a sync word has been received. It is therefore recommended to always wake up the microcontroller on sync word detection when using WOR mode. This can be done by selecting output signal 6 (see Table 34 on page 56) on one of the programmable GDO output pins, and

programming the microcontroller to wake up on an edge-triggered interrupt from this GDO

pin. The chip status byte that is available on the SO pin while transferring the SPI header contains the fill grade of the RX FIFO if the access is a read operation and the fill grade of the TX FIFO if the access is a write operation. Section 10.1 on page 26 contains more details on this.

The number of bytes in the RX FIFO and TX FIFO can be read from the status registers

RXBYTES.NUM_RXBYTES and TXBYTES.NUM_TXBYTES respectively. If a received data byte is written to the RX FIFO at the exact same time as the last byte in the RX FIFO is read over the SPI interface, the RX FIFO pointer is not properly updated and the last read byte is duplicated. To avoid this

Page 46 of 96

problem one should never empty the RX FIFO before the last byte of the packet is received. For packet lengths less than bytes it is recommended to wait until the complete packet has been received before reading it out of the RX FIFO.

If the packet length is larger than bytes the MCU must determine how many bytes can be

read from the RX FIFO (RXBYTES.NUM_RXBYTES-1) and the following software routine can be used:

1. Read

RXBYTES.NUM_RXBYTES

repeatedly at a rate guaranteed to be at least twice that of which RF bytes are received until the same value is returned twice; store value in n.

2. If n < # of bytes remaining in packet, read

n-1 bytes from the RX FIFO. 3. Repeat steps 1 and 2 until n = # of bytes

remaining in packet. 4. Read the remaining bytes from the RX

FIFO. The 4-bit FIFOTHR.FIFO_THR setting is used to program threshold points in the FIFOs. Table 29 lists the 16 FIFO_THR settings and the corresponding thresholds for the RX and TX FIFOs. The threshold value is coded in opposite directions for the RX FIFO and TX FIFO. This gives equal margin to the overflow and underflow conditions when the threshold is reached.

A signal will assert when the number of bytes in the FIFO is equal to or higher than the programmed threshold. This signal can be viewed on the GDO pins (see Table 34 on page 56).

Figure 21 shows the number of bytes in both the RX FIFO and TX FIFO when the threshold signal toggles, in the case of FIFO_THR=13. Figure 20 shows the signal as the respective FIFO is filled above the threshold, and then drained below.

SWRS038C CC1100 NUM_RXBYTES

53555657565553GDO

NUM_TXBYTES

67109876GDO

Figure 20: FIFO_THR=13 vs. Number of Bytes in FIFO (GDOx_CFG=0x00 in RX and

GDOx_CFG=0x02 in TX) FIFO_THR Bytes in TX FIFO Bytes in RX FIFO

0 (0000) 61 4 1 (0001) 57 8 2 (0010) 53 12 3 (0011) 49 16 4 (0100) 45 20 5 (0101) 41 24 6 (0110) 37 28 7 (0111) 33 32 8 (1000) 29 36 9 (1001) 25 40 10 (1010) 21 44 11 (1011) 17 48 12 (1100) 13 52 13 (1101) 9 56 14 (1110) 5 60 15 (1111)

1

Table 29: FIFO_THR Settings and the Corresponding FIFO Thresholds OverflowmarginFIFO_THR=1356 bytesFIFO_THR=13Underflowmargin8 bytesRXFIFO

TXFIFO

Figure 21: Example of FIFOs at Threshold

Page 47 of 96

CC1100 The base or start frequency is set by the 24 bit frequency word located in the FREQ2, FREQ1, and FREQ0 registers. This word will typically be set to the centre of the lowest channel frequency that is to be used.

21 Frequency Programming

The frequency programming in CC1100 is designed to minimize the programming needed in a channel-oriented system.

To set up a system with channel numbers, the desired channel spacing is programmed with the MDMCFG0.CHANSPC_M and The desired channel number is programmed

with the 8-bit channel number register, MDMCFG1.CHANSPC_E registers. The channel

CHANNR.CHAN, which is multiplied by the spacing registers are mantissa and exponent

respectively. channel offset. The resultant carrier frequency

is given by:

fcarrier=

fXOSC

⋅FREQ+CHAN⋅(256+CHANSPC_M)⋅2CHANSPC_E−2 16

2

(())With a 26 MHz crystal the maximum channel spacing is 405 kHz. To get e.g. 1 MHz channel spacing one solution is to use 333 kHz channel spacing and select each third channel in CHANNR.CHAN.

The preferred IF frequency is programmed with the FSCTRL1.FREQ_IF register. The IF frequency is given by:

[7] Note that the SmartRF® Studio software

automatically calculates the optimum FSCTRL1.FREQ_IF register setting based on channel spacing and channel filter bandwidth. If any frequency programming register is altered when the frequency synthesizer is running, the synthesizer may give an undesired response. Hence, the frequency programming should only be updated when the radio is in the IDLE state.

fIF=

fXOSC

⋅FREQ_IF 210

22 VCO

The VCO is completely integrated on-chip. 22.1 VCO and PLL Self-Calibration

The VCO characteristics will vary with temperature and supply voltage changes, as well as the desired operating frequency. In order to ensure reliable operation, CC1100 includes frequency synthesizer self-calibration circuitry. This calibration should be done regularly, and must be performed after turning on power and before using a new frequency (or channel). The number of XOSC cycles for completing the PLL calibration is given in Table 28 on page 46.

The calibration can be initiated automatically or manually. The synthesizer can be automatically calibrated each time the synthesizer is turned on, or each time the synthesizer is turned off automatically. This is configured with the MCSM0.FS_AUTOCAL register setting. In manual mode, the calibration is initiated when the SCAL

command strobe is activated in the IDLE mode.

Note that the calibration values are maintained in SLEEP mode, so the calibration is still valid after waking up from SLEEP mode (unless supply voltage or temperature has changed significantly).

To check that the PLL is in lock the user can program register IOCFGx.GDOx_CFG to 0x0A and use the lock detector output available on the GDOx pin as an interrupt for the MCU (x = 0,1, or 2). A positive transition on the GDOx pin means that the PLL is in lock. As an alternative the user can read register FSCAL1. The PLL is in lock if the register content is different from 0x3F. Refer also to the CC1100 Errata Notes [1]. For more robust operation the source code could include a check so that the PLL is re-calibrated until PLL lock is achieved if the PLL does not lock the first time.

SWRS038C Page 48 of 96

CC1100 Setting the CSn pin low turns on the voltage regulator to the digital core and starts the crystal oscillator. The SO pin on the SPI interface must go low before the first positive edge of SCLK. (setup time is given in Table 16).

If the chip is programmed to enter power-down mode, (SPWD strobe issued), the power will be turned off after CSn goes high. The power and crystal oscillator will be turned on again when CSn goes low.

The voltage regulator output should only be used for driving the CC1100.

23 Voltage Regulators

CC1100 contains several on-chip linear voltage regulators, which generate the supply voltage needed by low-voltage modules. These voltage regulators are invisible to the user, and can be viewed as integral parts of the various modules. The user must however make sure that the absolute maximum ratings and required pin voltages in Table 1 and Table 13 are not exceeded. The voltage regulator for the digital core requires one external decoupling capacitor.

24 Output Power Programming

The RF output power level from the device has two levels of programmability, as illustrated in Figure 22. Firstly, the special PATABLE register can hold up to eight user selected output power settings. Secondly, the 3-bit FREND0.PA_POWER value selects the PATABLE entry to use. This two-level functionality provides flexible PA power ramp up and ramp down at the start and end of transmission, as well as ASK modulation shaping. All the PA power settings in the PATABLE from index 0 up to the FREND0.PA_POWER value are used.

The power ramping at the start and at the end of a packet can be turned off by setting FREND0.PA_POWER to zero and then program the desired output power to index 0 in the PATABLE.

Output Power [dBm]

Setting

315 MHz Current

Consumption, Typ. [mA]

Setting

433 MHz Current

Consumption, Typ. [mA]

Setting

868 MHz Current

Consumption, Typ. [mA]

Setting

915 MHz Current

Consumption, Typ. [mA]

If OOK modulation is used, the logic 0 and logic 1 power levels shall be programmed to index 0 and 1 respectively.

Table 30 contains recommended PATABLE settings for various output levels and frequency bands. Using PA settings from 0x61 to 0x6F is not recommended. See Section 10.6 on page 28 for PATABLE programming

details.

Table 31 contains output power and current consumption for default PATABLE setting (0xC6). PATABLE must be programmed in burst mode if you want to write to other entries than PATABLE[0].

Note that all content of the PATABLE, except for the first byte (index 0) is lost when entering the SLEEP state.

-30 0x04 10.6 0x04 11.5 0x03 11.9 0x11 11.8 -20 0x17 11.1 0x17 12.1 0x0D 12.4 0x0D 12.3 -15 0x1D 11.8 0x1C 12.7 0x1C 13.0 0x1C 13.0 -10 0x26 13.0 0x26 14.0 0x34 14.5 0x26 14.3 -5 0x57 12.9 0x57 13.7 0x57 14.1 0x57 13.9 0 0x60 14.8 0x60 15.6 0x8E 16.9 0x8E 16.7 5 0x85 18.1 0x85 19.1 0x85 20.0 0x83 19.9 7 0xCB 22.1 0xC8 24.2 0xCC 25.8 0xC9 25.8 10 0xC2 27.1 0xC0 29.2 0xC3 31.1 0xC0 32.3 Table 30: Optimum PATABLE Settings for Various Output Power Levels and Frequency Bands

SWRS038C Page 49 of 96

Default Power Setting

Output Power [dBm]

315 MHz Current

Consumption, Typ. [mA]

Output Power [dBm]

433 MHz Current

Consumption, Typ. [mA]

Output Power [dBm]

CC1100 868 MHz Current

Consumption, Typ. [mA]

Output Power [dBm]

915 MHz Current

Consumption, Typ. [mA]

0xC6 8.7 24.5 7.9 25.2 8.9 28.3 7.9 26.8 Table 31: Output Power and Current Consumption for Default PATABLE Setting

25 Shaping and PA Ramping

With ASK modulation, up to eight power settings are used for shaping. The modulator contains a counter that counts up when transmitting a one and down when transmitting a zero. The counter counts at a rate equal to 8 times the symbol rate. The counter saturates at FREND0.PA_POWER and 0 respectively. This counter value is used as an index for a lookup in the power table. Thus, in order to utilize the whole table, FREND0.PA_POWER

PATABLE(7)[7:0]PATABLE(6)[7:0]PATABLE(5)[7:0]PATABLE(4)[7:0]PATABLE(3)[7:0]PATABLE(2)[7:0]PATABLE(1)[7:0]PATABLE(0)[7:0]Index into PATABLE(7:0)Settings 0 to PA_POWER areused during ramp-up at start oftransmission and ramp-down atend of transmission, and forASK/OOK modulation.The PA uses thissetting.should be 7 when ASK is active. The shaping of the ASK signal is dependent on the configuration of the PATABLE.

Note that the ASK shaping feature is only supported for output power levels up to -1 dBm and only values in the range 0x30–0x3F, together with 0x00 can be used. The same is the case when implementing PA ramping for other modulations formats. Figure 23 shows some examples of ASK shaping.

e.g 6PA_POWER[2:0]in FREND0 registerThe SmartRF® Studio softwareshould be used to obtain optimumPATABLE settings for variousoutput powers.

Figure 22: PA_POWER and PATABLE

Output Power

PATABLE[7]PATABLE[6]PATABLE[5]PATABLE[4]PATABLE[3]PATABLE[2]PATABLE[1]PATABLE[0]

10010110TimeBit Sequence

FREND0.PA_POWER = 3FREND0.PA_POWER = 7

Figure 23: Shaping of ASK Signal

SWRS038C Page 50 of 96

PATABLE Setting

315 MHz

433 MHz

CC1100 Output Power [dBm]

868 MHz

915 MHz

0x00 -62.0 -62.0 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F -57.1 -56.0 -41.7 -39.0 -33.6 -33.1 -21.8 -21.7 -21.2 -21.0 -16.2 -16.1 -16.0 -15.8 -12.8 -12.7 -12.7 -12.5 -10.5 -10.4 -10.5 -10.3 -8.6 -8.5 -8.7 -8.5 -7.2 -7.1 -7.4 -7.2 -5.9 -5.8 -6.2 -6.0 -4.8 -4.9 -5.3 -5.1 -3.9 -4.0 -4.5 -4.3 -3.2 -3.3 -3.8 -3.7 -2.5 -2.7 -3.3 -3.1 -2.1 -2.3 -2.8 -2.7 -1.7 -1.9 -2.5 -2.3 -1.3 -1.6 -2.1 -2.0 -1.1 -1.3 -1.9 -1.7 Table 32: PATABLE Settings used together with ASK Shaping and PA Ramping

Assume working in the 433 MHz and using

FSK. The desired output power is -10 dBm. Figure 24 shows how the PATABLE should look like in the two cases where no ramping is used (A) and when PA ramping is being implemented (B). In case A, the PATABLE value is taken from Table 30, while in case B, the values are taken from Table 32.

PATABLE[7] = 0x00PATABLE[6] = 0x00PATABLE[5] = 0x00PATABLE[4] = 0x00PATABLE[3] = 0x00PATABLE[2] = 0x00PATABLE[1] = 0x00PATABLE[0] = 0x26PATABLE[7] = 0x00PATABLE[6] = 0x00PATABLE[5] = 0x34PATABLE[4] = 0x33PATABLE[3] = 0x32PATABLE[2] = 0x31PATABLE[1] = 0x30PATABLE[0] = 0x00FREND0.PA_POWER = 0A: Output Power = -10 dBm,No PA Ramping

FREND0.PA_POWER = 5B: Output Power = -10 dBm, PA Ramping

Figure 24: PA Ramping

SWRS038C Page 51 of 96

CC1100 26 Selectivity

Figure 25 to Figure 27 show the typical selectivity performance (adjacent and alternate rejection).

50.040.030.0Selectivity [dB]20.010.00.0-0.5-10.0-0.4-0.3-0.2-0.10.00.10.20.40.5Frequency offset [MHz]

Figure 25: Typical Selectivity at 1.2 kBaud Data Rate, 868 MHz, 2-FSK, 5.2 kHz Deviation. IF

Frequency is 152.3 kHz and the Digital Channel Filter Bandwidth is 58 kHz

40.030.020.0Selectivity [dB]10.00.0-0.5-10.0-0.4-0.3-0.2-0.10.00.10.20.40.5-20.0Frequency offset [MHz]

Figure 26: Typical Selectivity at 38.4 kBaud Data Rate, 868 MHz, 2-FSK, 20 kHz Deviation. IF

Frequency is 152.3 kHz and the Digital Channel Filter Bandwidth is 100 kHz

SWRS038C Page 52 of 96

50.040.0 CC1100 30.0Selectivity [dB]20.010.00.0-2.3-10.01.5-1.0-0.80.00.81.01.52.3-20.0Frequency offset [MHz]

Figure 27: Typical Selectivity at 250 kBaud Data Rate, 868 MHz, MSK, IF Frequency is 2 kHz

and the Digital Channel Filter Bandwidth is 0 kHz

27 Crystal Oscillator

A crystal in the frequency range 26-27 MHz must be connected between the XOSC_Q1 and XOSC_Q2 pins. The oscillator is designed for parallel mode operation of the crystal. In addition, loading capacitors (C81 and C101) for the crystal are required. The loading capacitor values depend on the total load capacitance, CL, specified for the crystal. The total load capacitance seen between the crystal terminals should equal CL for the crystal to oscillate at the specified frequency.

The crystal oscillator circuit is shown in Figure 28. Typical component values for different values of CL are given in Table 33.

The crystal oscillator is amplitude regulated. This means that a high current is used to start up the oscillations. When the amplitude builds up, the current is reduced to what is necessary to maintain approximately 0.4 Vpp signal swing. This ensures a fast start-up, and keeps the drive level to a minimum. The ESR of the crystal should be within the specification in order to ensure a reliable start-up (see Section 4.4 on page 14).

The initial tolerance, temperature drift, aging and load pulling should be carefully specified in order to meet the required frequency accuracy in a certain application.

CL=

111+C81C101

+Cparasitic

The parasitic capacitance is constituted by pin input capacitance and PCB stray capacitance. Total parasitic capacitance is typically 2.5 pF.

XOSC_Q1XOSC_Q2XTALC81C101

Figure 28: Crystal Oscillator Circuit

Component

CL = 10 pF

CL = 13 pF

CL = 16 pF

C81 C101

15 pF 15 pF

22 pF 22 pF

27 pF 27 pF

Table 33: Crystal Oscillator Component Values

SWRS038C Page 53 of 96

27.1 Reference Signal

The chip can alternatively be operated with a reference signal from 26 to 27 MHz instead of a crystal. This input clock can either be a full-swing digital signal (0 V to VDD) or a sine wave of maximum 1 V peak-peak amplitude. The reference signal must be connected to the

28 External RF Match

The balanced RF input and output of CC1100 share two common pins and are designed for a simple, low-cost matching and balun network on the printed circuit board. The receive- and transmit switching at the CC1100 front-end is controlled by a dedicated on-chip function, eliminating the need for an external RX/TX-switch.

A few passive external components combined with the internal RX/TX switch/termination circuitry ensures match in both RX and TX mode.

Although CC1100 has a balanced RF input/output, the chip can be connected to a single-ended antenna with few external low cost capacitors and inductors.

29 PCB Layout Recommendations

The top layer should be used for signal routing, and the open areas should be filled with metallization connected to ground using several vias.

The area under the chip is used for grounding and shall be connected to the bottom ground plane with several vias. In the CC1100EM reference designs ( [5] and [6]) we have placed 5 vias inside the exposed die attached pad. These vias should be “tented” (covered with solder mask) on the component side of the PCB to avoid migration of solder through the vias during the solder reflow process.

The solder paste coverage should not be 100%. If it is, out gassing may occur during the reflow process, which may cause defects (splattering, solder balling). Using “tented” vias reduces the solder paste coverage below 100%.

See Figure 29 for top solder resist and top paste masks.

Each decoupling capacitor should be placed as close as possible to the supply pin it is supposed to decouple. Each decoupling capacitor should be connected to the power line (or power plane) by separate vias. The

SWRS038C

CC1100 XOSC_Q1 input. The sine wave must be connected to XOSC_Q1 using a serial capacitor. When using a full-swing digital signal this capacitor can be omitted. The XOSC_Q2 line must be left un-connected. C81 and C101 can be omitted when using a reference signal.

The passive matching/filtering network connected to CC1100 should have the following differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna: Zout 315 MHz = 122 + j31 Ω Zout 433 MHz = 116 + j41 Ω Zout 868/915 MHz = 86.5 + j43 Ω

To ensure optimal matching of the CC1100 differential output it is recommended to follow the CC1100EM reference design ( [5] or [6]) as closely as possible. Gerber files for the reference designs are available for download from the TI website.

best routing is from the power line (or power plane) to the decoupling capacitor and then to the CC1100 supply pin. Supply power filtering is very important.

Each decoupling capacitor ground pad should be connected to the ground plane using a separate via. Direct connections between neighboring power pins will increase noise coupling and should be avoided unless absolutely necessary.

The external components should ideally be as small as possible (0402 is recommended) and surface mount devices are highly recommended. Please note that components smaller than those specified may have differing characteristics.

Precaution should be used when placing the microcontroller in order to avoid noise interfering with the RF circuitry.

A CC1100/1150DK Development Kit with a fully assembled CC1100EM Evaluation Module is available. It is strongly advised that this reference layout is followed very closely in order to get the best performance. The schematic, BOM and layout Gerber files are all available from the TI website ( [5] and [6]).

Page of 96

CC1100

Figure 29: Left: Top Solder Resist Mask (Negative). Right: Top Paste Mask. Circles are Vias

30 General Purpose / Test Output Control Pins

The three digital output pins GDO0, GDO1, and GDO2 are general control pins configured with IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG, and IOCFG2.GDO3_CFG respectively. Table 34 shows the different signals that can be monitored on the GDO pins. These signals can be used as inputs to the MCU. GDO1 is the same pin as the SO pin on the SPI interface, thus the output programmed on this pin will only be valid when CSn is high. The default value for GDO1 is 3-stated, which is useful when the SPI interface is shared with other devices.

The default value for GDO0 is a 135-141 kHz clock output (XOSC frequency divided by 192). Since the XOSC is turned on at power-on-reset, this can be used to clock the MCU in systems with only one crystal. When the MCU is up and running, it can change the clock frequency by writing to IOCFG0.GDO0_CFG. An on-chip analog temperature sensor is enabled by writing the value 128 (0x80) to the

IOCFG0 register. The voltage on the GDO0 pin is then proportional to temperature. See Section 4.7 on page 16 for temperature sensor specifications.

If the IOCFGx.GDOx_CFG setting is less than 0x20 and IOCFGx_GDOx_INV is 0 (1), the GDO0 and GDO2 pins will be hardwired to 0 (1) and the GDO1 pin will be hardwired to 1 (0) in the SLEEP state. These signals will be hardwired until the CHIP_RDYn signal goes low.

If the IOCFGx.GDOx_CFG setting is 0x20 or higher the GDO pins will work as programmed also in SLEEP state. As an example, GDO1 is high impedance in all states if IOCFG1.GDO1_CFG=0x2E.

SWRS038C Page 55 of 96

GDOx_CFG[5:0] 0 (0x00) 1 (0x01) 2 (0x02) 3 (0x03) 4 (0x04) 5 (0x05) 6 (0x06) 7 (0x07) 8 (0x08) 9 (0x09) 10 (0x0A) 11 (0x0B) 12 (0x0C) 13 (0x0D) 14 (0x0E) 15 (0x0F) 16 (0x10) 17 (0x11) 18 (0x12) 19 (0x13) 20 (0x14) 21 (0x15) 22 (0x16) 23 (0x17) 24 (0x18) 25 (0x19) 26 (0x1A) 27 (0x1B) 28 (0x1C) 29 (0x1D) 30 (0x1E) 31 (0x1F) 32 (0x20) 33 (0x21) 34 (0x22) 35 (0x23) 36 (0x24) 37 (0x25) 38 (0x26) 39 (0x27) 40 (0x28) 41 (0x29) 42 (0x2A) 43 (0x2B) 44 (0x2C) 45 (0x2D) 46 (0x2E) 47 (0x2F) 48 (0x30) 49 (0x31) 50 (0x32) 51 (0x33) 52 (0x34) 53 (0x35) (0x36) 55 (0x37) 56 (0x38) 57 (0x39) 58 (0x3A) 59 (0x3B) 60 (0x3C) 61 (0x3D) 62 (0x3E) 63 (0x3F) CC1100 Description Associated to the RX FIFO: Asserts when RX FIFO is filled at or above the RX FIFO threshold. De-asserts when RX FIFO is drained below the same threshold.

Associated to the RX FIFO: Asserts when RX FIFO is filled at or above the RX FIFO threshold or the end of packet is reached. De-asserts when the RX FIFO is empty.

Associated to the TX FIFO: Asserts when the TX FIFO is filled at or above the TX FIFO threshold. De-asserts when the TX FIFO is below the same threshold.

Associated to the TX FIFO: Asserts when TX FIFO is full. De-asserts when the TX FIFO is drained below theTX FIFO threshold.

Asserts when the RX FIFO has overflowed. De-asserts when the FIFO has been flushed. Asserts when the TX FIFO has underflowed. De-asserts when the FIFO is flushed. Asserts when sync word has been sent / received, and de-asserts at the end of the packet. In RX, the pin will de-assert when the optional address check fails or the RX FIFO overflows. In TX the pin will de-assert if the TX FIFO underflows. Asserts when a packet has been received with CRC OK. De-asserts when the first byte is read from the RX FIFO. Preamble Quality Reached. Asserts when the PQI is above the programmed PQT value. Clear channel assessment. High when RSSI level is below threshold (dependent on the current CCA_MODE setting) Lock detector output. The PLL is in lock if the lock detector output has a positive transition or is constantly logic high. To check for PLL lock the lock detector output should be used as an interrupt for the MCU. Serial Clock. Synchronous to the data in synchronous serial mode. In RX mode, data is set up on the falling edge by CC1100 when GDOx_INV=0.

In TX mode, data is sampled by CC1100 on the rising edge of the serial clock when GDOx_INV=0. Serial Synchronous Data Output. Used for synchronous serial mode. Serial Data Output. Used for asynchronous serial mode. Carrier sense. High if RSSI level is above threshold. CRC_OK. The last CRC comparison matched. Cleared when entering/restarting RX mode. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. RX_HARD_DATA[1]. Can be used together with RX_SYMBOL_TICK for alternative serial RX output. RX_HARD_DATA[0]. Can be used together with RX_SYMBOL_TICK for alternative serial RX output. Reserved – used for test. Reserved – used for test. Reserved – used for test. PA_PD. Note: PA_PD will have the same signal level in SLEEP and TX states. To control an external PA or RX/TX switch in applications where the SLEEP state is used it is recommended to use GDOx_CFGx=0x2F instead.

LNA_PD. Note: LNA_PD will have the same signal level in SLEEP and RX states. To control an external LNA or RX/TX switch in applications where the SLEEP state is used it is recommended to use GDOx_CFGx=0x2F instead. RX_SYMBOL_TICK. Can be used together with RX_HARD_DATA for alternative serial RX output. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. Reserved – used for test. WOR_EVNT0 WOR_EVNT1 Reserved – used for test. CLK_32k Reserved – used for test. CHIP_RDYn Reserved – used for test. XOSC_STABLE

Reserved – used for test. GDO0_Z_EN_N. When this output is 0, GDO0 is configured as input (for serial TX data). High impedance (3-state) HW to 0 (HW1 achieved by setting GDOx_INV=1). Can be used to control an external LNA/PA or RX/TX switch. CLK_XOSC/1 CLK_XOSC/1.5 CLK_XOSC/2 CLK_XOSC/3 CLK_XOSC/4 Note: There are 3 GDO pins, but only one CLK_XOSC/n can be selected as an output at any CLK_XOSC/6 time. If CLK_XOSC/n is to be monitored on one of the GDO pins, the other two GDO pins must CLK_XOSC/8 be configured to values less than 0x30. The GDO0 default value is CLK_XOSC/192. CLK_XOSC/12 CLK_XOSC/16 To optimize rf performance, these signal should not be used while the radio is in RX or TX mode.

CLK_XOSC/24 CLK_XOSC/32 CLK_XOSC/48 CLK_XOSC/ CLK_XOSC/96 CLK_XOSC/128 CLK_XOSC/192 Table 34: GDOx Signal Selection (x = 0, 1, or 2)

SWRS038C Page 56 of 96

CC1100 31.2 Synchronous Serial Operation

Setting PKTCTRL0.PKT_FORMAT to 1 enables synchronous serial mode. In the synchronous serial mode, data is transferred on a two wire serial interface. The CC1100 provides a clock that is used to set up new data on the data input line or sample data on the data output line. Data input (TX data) is the GDO0 pin. This pin will automatically be configured as an input when TX is active. The data output pin can be any of the GDO pins; this is set by the IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG, and IOCFG2.GDO2_CFG fields.

Preamble and sync word insertion/detection may or may not be active, dependent on the sync mode set by the MDMCFG2.SYNC_MODE. If preamble and sync word is disabled, all other packet handler features and FEC should also be disabled. The MCU must then handle preamble and sync word insertion and detection in software. If preamble and sync word insertion/detection is left on, all packet handling features and FEC can be used. One exception is that the address filtering feature is unavailable in synchronous serial mode. When using the packet handling features in synchronous serial mode, the CC1100 will insert and detect the preamble and sync word and the MCU will only provide/get the data payload. This is equivalent to the recommended FIFO operation mode.

31 Asynchronous and Synchronous Serial Operation

Several features and modes of operation have been included in the CC1100 to provide backward compatibility with previous Chipcon products and other existing RF communication systems. For new systems, it is recommended to use the built-in packet handling features, as they can give more robust communication, significantly offload the microcontroller, and simplify software development. 31.1 Asynchronous Operation

For backward compatibility with systems already using the asynchronous data transfer from other Chipcon products, asynchronous transfer is also included in CC1100. When asynchronous transfer is enabled, several of the support mechanisms for the MCU that are included in CC1100 will be disabled, such as packet handling hardware, buffering in the FIFO, and so on. The asynchronous transfer mode does not allow the use of the data whitener, interleaver, and FEC, and it is not possible to use Manchester encoding.

Note that MSK is not supported for asynchronous transfer.

Setting PKTCTRL0.PKT_FORMAT enables asynchronous serial mode.

to 3

In TX, the GDO0 pin is used for data input (TX data). Data output can be on GDO0, GDO1, or GDO2. This is set by the IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG and IOCFG2.GDO2_CFG fields.

The CC1100 modulator samples the level of the asynchronous input 8 times faster than the programmed data rate. The timing requirement for the asynchronous stream is that the error in the bit period must be less than one eighth of the programmed data rate.

32 System Considerations and Guidelines

32.1 SRD Regulations

International regulations and national laws regulate the use of radio receivers and transmitters. Short Range Devices (SRDs) for license free operation below 1 GHz are usually operated in the 433 MHz, 868 MHz or 915 MHz frequency bands. The CC1100 is specifically designed for such use with its 300 - 348 MHz, 400 - 4 MHz, and 800 - 928 MHz operating ranges. The most important regulations when using the CC1100 in the 433

MHz, 868 MHz, or 915 MHz frequency bands are EN 300 220 (Europe) and FCC CFR47 part 15 (USA). A summary of the most important aspects of these regulations can be found in Application Note AN001 [2]. Please note that compliance with regulations is dependent on complete system performance. It is the customer’s responsibility to ensure that the system complies with regulations.

SWRS038C Page 57 of 96

32.2 Frequency Hopping and Multi-Channel Systems The 433 MHz, 868 MHz, or 915 MHz bands are shared by many systems both in industrial, office, and home environments. It is therefore recommended to use frequency hopping spread spectrum (FHSS) or a multi-channel protocol because the frequency diversity makes the system more robust with respect to interference from other systems operating in the same frequency band. FHSS also combats multipath fading.

CC1100 is highly suited for FHSS or multi-channel systems due to its agile frequency synthesizer and effective communication interface. Using the packet handling support and data buffering is also beneficial in such systems as these features will significantly offload the host controller.

Charge pump current, VCO current, and VCO capacitance array calibration data is required for each frequency when implementing frequency hopping for CC1100. There are 3 ways of obtaining the calibration data from the chip:

1) Frequency hopping with calibration for each hop. The PLL calibration time is approximately 720 µs. The blanking interval between each frequency hop is then approximately 810 us. 2) Fast frequency hopping without calibration for each hop can be done by calibrating each frequency at startup and saving the resulting FSCAL3, FSCAL2, and FSCAL1 register values in MCU memory. Between each frequency hop, the calibration process can then be replaced by writing the FSCAL3, FSCAL2and FSCAL1 register values corresponding to the next RF frequency. The PLL turn on time is approximately 90 µs. The blanking interval between each frequency hop is then approximately 90 us. The VCO current calibration result available in FSCAL2 is not dependent on the RF frequency. Neither is the charge pump current calibration result available in FSCAL3. The same value can therefore be used for all frequencies.

3) Run calibration on a single frequency at startup. Next write 0 to FSCAL3[5:4] to disable the charge pump calibration. After writing to FSCAL3[5:4] strobe SRX (or STX) with MCSM0.FS_AUTOCAL=1 for each new frequency hop. That is, VCO current and VCO capacitance calibration is done but not charge pump current calibration. When charge pump current calibration is disabled the calibration

SWRS038C CC1100 time is reduced from approximately 720 µs to approximately 150 µs. The blanking interval between each frequency hop is then approximately 240 us.

There is a trade off between blanking time and memory space needed for storing calibration data in non-volatile memory. Solution 2) above gives the shortest blanking interval, but requires more memory space to store calibration values. Solution 3) gives approximately 570 µs smaller blanking interval than solution 1).

Note that the recommended settings for TEST0.VCO_SEL_CAL_EN will change with frequency. This means that one should always use SmartRF® Studio [7] to get the correct settings for a specific frequency before doing a calibration, regardless of which calibration method is being used.

It must be noted that the TESTn registers (n = 0, 1, or 2) content is not retained in SLEEP state, and thus it is necessary to re-write these registers when returning from the SLEEP state.

32.3 Wideband Modulation not Using

Spread Spectrum Digital modulation systems under FFC part 15.247 includes 2-FSK and GFSK modulation. A maximum peak output power of 1W (+30 dBm) is allowed if the 6 dB bandwidth of the modulated signal exceeds 500 kHz. In addition, the peak power spectral density conducted to the antenna shall not be greater than +8 dBm in any 3 kHz band.

Operating at high data rates and frequency separation, the CC1100 is suited for systems targeting compliance with digital modulation system as defined by FFC part 15.247. An external power amplifier is needed to increase the output above +10 dBm. 32.4 Data Burst Transmissions

The high maximum data rate of CC1100 opens up for burst transmissions. A low average data rate link (e.g. 10 kBaud), can be realized using a higher over-the-air data rate. Buffering the data and transmitting in bursts at high data rate (e.g. 500 kBaud) will reduce the time in active mode, and hence also reduce the average current consumption significantly. Reducing the time in active mode will reduce the likelihood of collisions with other systems in the same frequency range.

Page 58 of 96

32.5 Continuous Transmissions

CC1100 32.8 Low Cost Systems

As the CC1100 provides 500 kBaud multi-channel performance without any external

filters, a very low cost system can be made. A differential antenna will eliminate the need for a balun, and the DC biasing can be achieved in the antenna topology, see Figure 3 and Figure 4.

A HC-49 type SMD crystal is used in the CC1100EM reference designs ( [5] and [6]). Note that the crystal package strongly influences the price. In a size constrained PCB design a smaller, but more expensive, crystal may be used. 32.9 Battery Operated Systems

In low power applications, the SLEEP state with the crystal oscillator core switched off should be used when the CC1100 is not active. It is possible to leave the crystal oscillator core running in the SLEEP state if start-up time is critical.

The WOR functionality should be used in low power applications.

32.10 Increasing Output Power

In some applications it may be necessary to extend the link range. Adding an external power amplifier is the most effective way of doing this.

The power amplifier should be inserted between the antenna and the balun, and two T/R switches are needed to disconnect the PA in RX mode. See Figure 30.

In data streaming applications the CC1100 opens up for continuous transmissions at 500 kBaud effective data rate. As the modulation is done with a closed loop PLL, there is no limitation in the length of a transmission (open loop modulation used in some transceivers often prevents this kind of continuous data streaming and reduces the effective data rate). 32.6 Crystal Drift Compensation

The CC1100 has a very fine frequency resolution (see Table 9). This feature can be used to compensate for frequency offset and drift.

The frequency offset between an ‘external’ transmitter and the receiver is measured in the CC1100 and can be read back from the FREQEST status register as described in Section 14.1. The measured frequency offset can be used to calibrate the frequency using the ‘external’ transmitter as the reference. That is, the received signal of the device will match the receiver’s channel filter better. In the same way the centre frequency of the transmitted signal will match the ‘external’ transmitter’s signal.

32.7 Spectrum Efficient Modulation

CC1100 also has the possibility to use Gaussian shaped 2-FSK (GFSK). This spectrum-shaping feature improves adjacent channel power (ACP) and occupied bandwidth. In ‘true’ 2-FSK systems with abrupt frequency shifting, the spectrum is inherently broad. By making the frequency shift ‘softer’, the spectrum can be made significantly narrower. Thus, higher data rates can be transmitted in the same bandwidth using GFSK.

Antenna

Filter PABalunCC1100 T/R switch

T/R switch

Figure 30: Block Diagram of CC1100 Usage with External Power Amplifier

SWRS038C Page 59 of 96

CC1100 There are also 12 Status registers, which are listed in Table 37. These registers, which are read-only, contain information about the status of CC1100.

The two FIFOs are accessed through one 8-bit register. Write operations write to the TX FIFO, while read operations read from the RX FIFO. During the header byte transfer and while writing data to a register or the TX FIFO, a status byte is returned on the SO line. This status byte is described in Table 17 on page 26.

Table 38 summarizes the SPI address space. The address to use is given by adding the base address to the left and the burst and read/write bits on the top. Note that the burst bit has different meaning for base addresses above and below 0x2F.

33 Configuration Registers

The configuration of CC1100 is done by programming 8-bit registers. The optimum configuration data based on selected system parameters are most easily found by using the

[7]. Complete SmartRF® Studio software

descriptions of the registers are given in the following tables. After chip reset, all the registers have default values as shown in the tables. The optimum register setting might differ from the default value. After a reset all registers that shall be different from the default value therefore needs to be programmed through the SPI interface.

There are 13 command strobe registers, listed in Table 35. Accessing these registers will initiate the change of an internal state or mode. There are 47 normal 8-bit configuration registers, listed in Table 36. Many of these registers are for test purposes only, and need not be written for normal operation of CC1100.

Address

Strobe Name

Description

0x30 SRES Reset chip.

0x31 SFSTXON Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1). If in RX (with CCA):

Go to a wait state where only the synthesizer is running (for quick RX / TX turnaround). 0x32

SXOFF

Turn off crystal oscillator.

0x33 SCAL Calibrate frequency synthesizer and turn it off. SCAL can be strobed from IDLE mode without

setting manual calibration mode (MCSM0.FS_AUTOCAL=0) 0x34 SRX Enable RX. Perform calibration first if coming from IDLE and MCSM0.FS_AUTOCAL=1. 0x35 STX In IDLE state: Enable TX. Perform calibration first if MCSM0.FS_AUTOCAL=1.

If in RX state and CCA is enabled: Only go to TX if channel is clear. 0x36 0x38 0x39

SIDLE SWOR SPWD

Exit RX / TX, turn off frequency synthesizer and exit Wake-On-Radio mode if applicable. Start automatic RX polling sequence (Wake-on-Radio) as described in Section 19.5 if WORCTRL.RC_PD=0.

Enter power down mode when CSn goes high.

0x3A SFRX Flush the RX FIFO buffer. Only issue SFRX in IDLE or, RXFIFO_OVERFLOW states. 0x3B SFTX Flush the TX FIFO buffer. Only issue SFTX in IDLE or TXFIFO_UNDERFLOW states. 0x3C 0x3D

SWORRST SNOP

Reset real time clock to Event1 value.

No operation. May be used to get access to the chip status byte.

Table 35: Command Strobes

SWRS038C Page 60 of 96

Address

Register

Description

CC1100 Preserved in SLEEP State

Details on Page Number

GDO2 output pin configuration 0x00 IOCFG2 GDO1 output pin configuration 0x01 IOCFG1 GDO0 output pin configuration 0x02 IOCFG0 0x03 0x04 0x05 0x07 0x08

FIFOTHR SYNC1 SYNC0 PKTCTRL1 PKTCTRL0

RX FIFO and TX FIFO thresholds Sync word, high byte Sync word, low byte Packet automation control Packet automation control

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No

65 65 65 65 66 67 67 67 68 68 68 68 68 69 69 70 71 71 72 73 74 75 76 77 78 79 80 80 81 81 82 82 82 83 83 83 83 83 84 84 84 84 84 84

0x06 PKTLEN Packet length

0x09 ADDR Device address 0x0A CHANNR Channel number 0x0B 0x0C 0x0D 0x0E 0x0F

FSCTRL1 FSCTRL0 FREQ2 FREQ1 FREQ0

Frequency synthesizer control Frequency synthesizer control Frequency control word, high byte Frequency control word, middle byte Frequency control word, low byte

0x10 MDMCFG4 Modem configuration 0x11 MDMCFG3 Modem configuration 0x12 MDMCFG2 Modem configuration 0x13 MDMCFG1 Modem configuration 0x14 MDMCFG0 Modem configuration 0x15 0x16 0x17 0x18

DEVIATN MCSM2 MCSM1 MCSM0

Modem deviation setting

Main Radio Control State Machine configuration Main Radio Control State Machine configuration Main Radio Control State Machine configuration

0x19 FOCCFG Frequency Offset Compensation configuration 0x1A BSCFG Bit Synchronization configuration 0x1B AGCTRL2 AGC control 0x1C AGCTRL1 AGC control 0x1D AGCTRL0 AGC control 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29

WOREVT1 WOREVT0 WORCTRL FREND1 FREND0 FSCAL3 FSCAL2 FSCAL1 FSCAL0 RCCTRL1 RCCTRL0 FSTEST

High byte Event 0 timeout Low byte Event 0 timeout Wake On Radio control Front end RX configuration Front end TX configuration Frequency synthesizer calibration Frequency synthesizer calibration Frequency synthesizer calibration Frequency synthesizer calibration RC oscillator configuration RC oscillator configuration

Frequency synthesizer calibration control

0x2A PTEST Production test 0x2B AGCTEST AGC test 0x2C 0x2D 0x2E

TEST2 TEST1 TEST0

Various test settings Various test settings Various test settings

Table 36: Configuration Registers Overview

SWRS038C Page 61 of 96

Address

Register

Description

Part number for CC1100 Current version number Frequency Offset Estimate

CC1100 Details on page number

0x30 (0xF0) 0x31 (0xF1) 0x32 (0xF2) 0x33 (0xF3) 0x34 (0xF4) 0x35 (0xF5) 0x36 (0xF6) 0x37 (0xF7) 0x38 (0xF8) 0x39 (0xF9) 0x3A (0xFA) 0x3B (0xFB) 0x3C (0xFC) 0x3D (0xFD)

PARTNUM VERSION FREQEST

LQI RSSI MARCSTATE WORTIME1 WORTIME0 PKTSTATUS VCO_VC_DAC TXBYTES RXBYTES RCCTRL1_STATUS RCCTRL0_STATUS

85 85 85 85 85 86 86 86 87 87 87 87 87 88

Demodulator estimate for Link Quality Received signal strength indication Control state machine state High byte of WOR timer Low byte of WOR timer

Current GDOx status and packet status Current setting from PLL calibration module

Underflow and number of bytes in the TX FIFO

Overflow and number of bytes in the RX FIFO

Last RC oscillator calibration result Last RC oscillator calibration result

Table 37: Status Registers Overview

SWRS038C Page 62 of 96

CC1100 Write Read Single Byte Burst Single Byte Burst +0x00 +0x40 +0x80 +0xC0 0x00 IOCFG2 0x01 IOCFG1 0x02 IOCFG0 0x03 FIFOTHR 0x04 SYNC1 0x05 SYNC0 0x06 PKTLEN 0x07 PKTCTRL1 0x08 PKTCTRL0 0x09 ADDR 0x0A CHANNR 0x0B FSCTRL1 0x0C FSCTRL0 0x0D FREQ2 0x0E FREQ1 0x0F FREQ0 elb0x10 MDMCFG4 iss0x11 MDMCFG3 op0x12 MDMCFG2 ss0x13 MDMCFG1 ec0x14 MDMCFG0 ca 0x15 DEVIATN tsr0x16 MCSM2 ub 0x17 MCSM1 ,sr0x18 MCSM0 ets0x19 FOCCFG ig0x1A BSCFG er n0x1B AGCCTRL2 oit0x1C AGCCTRL1 ar0x1D AGCCTRL0 ugif0x1E WOREVT1 no0x1F WOREVT0 c 0x20 WORCTRL W/0x21 FREND1 R0x22 FREND0 0x23 FSCAL3 0x24 FSCAL2 0x25 FSCAL1 0x26 FSCAL0 0x27 RCCTRL1 0x28 RCCTRL0 0x29 FSTEST 0x2A PTEST 0x2B AGCTEST 0x2C TEST2 0x2D TEST1 0x2E TEST0 0x2F 0x30 SRES SRES PARTNUM 0x31 SFSTXON SFSTXON VERSION 0x32 SXOFF SXOFF FREQEST s r0x33 SCAL SCAL LQI esrtset0x34 SRX SRX RSSI igsi0x35 STX STX MARCSTATE egr esr 0x36 SIDLE SIDLE WORTIME1 uett0x37 WORTIME0 aytSb i0x38 SWOR SWOR PKTSTATUS t,lsu0x39 SPWD SPWD VCO_VC_DAC ebm 0x3A SFRX SFRX TXBYTES odrtn0x3B SFTX SFTX RXBYTES Sa d)y0x3C SWORRST SWORRST RCCTRL1_STATUSnlan0x3D SNOP SNOP RCCTRL0_STATUSmo d0x3E PATABLE PATABLE PATABLE PATABLE maoer0x3F TX FIFO TX FIFO RX FIFO RX FIFO

C(Table 38: SPI Address Space

SWRS038C Page 63 of 96

CC1100 33.1 Configuration Register Details – Registers with preserved values in SLEEP state

0x00: IOCFG2 – GDO2 Output Pin Configuration

Bit

Field Name

Reset

R/W

Description

7 Reserved 6 5:0

0 41 (0x29)

R0 R/W R/W

Invert output, i.e. select active low (1) / high (0) Default is CHP_RDYn (See Table 34 on page 56).

GDO2_INV GDO2_CFG[5:0]

0x01: IOCFG1 – GDO1 Output Pin Configuration

Bit

Field Name

Reset

R/W

Description

7 6 5:0

GDO_DS 0 0 46 (0x2E)

R/W R/W R/W

Set high (1) or low (0) output drive strength on the GDO pins. Invert output, i.e. select active low (1) / high (0) Default is 3-state (See Table 34 on page 56).

GDO1_INV GDO1_CFG[5:0]

0x02: IOCFG0 – GDO0 Output Pin Configuration

Bit

Field Name

Reset

R/W

Description

7 6 5:0

TEMP_SENSOR_ENABLE 0 0 63 (0x3F)

R/W R/W R/W

Enable analog temperature sensor. Write 0 in all other register

bits when using temperature sensor.

Invert output, i.e. select active low (1) / high (0) Default is CLK_XOSC/192 (See Table 34 on page 56). It is recommended to disable the clock output in initialization, in order to optimize RF performance.

GDO0_INV GDO0_CFG[5:0]

SWRS038C Page of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x03: FIFOTHR – RX FIFO and TX FIFO Thresholds

7:4 3:0

Reserved FIFO_THR[3:0]

0 7 (0111)

R/W R/W

Write 0 for compatibility with possible future extensions

Set the threshold for the TX FIFO and RX FIFO. The threshold is exceeded when the number of bytes in the FIFO is equal to or higher than the threshold value. Setting 0 (0000) 1 (0001) 2 (0010) 3 (0011) 4 (0100) 5 (0101) 6 (0110) 7 (0111) 8 (1000) 9 (1001) 10 (1010) 11 (1011) 12 (1100) 13 (1101) 14 (1110)

Bytes in TX FIFO

61 57 53 49 45 41 37 33 29 25 21 17 13 9 5 1

Bytes in RX FIFO

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

15 (1111)

0x04: SYNC1 – Sync Word, High Byte

Bit

Field Name

Reset

R/W

Description

7:0 SYNC[15:8] 211 (0xD3) R/W 8 MSB of 16-bit sync word

0x05: SYNC0 – Sync Word, Low Byte

Bit

Field Name

Reset

R/W

Description

7:0 SYNC[7:0] 145 (0x91) R/W 8 LSB of 16-bit sync word

0x06: PKTLEN – Packet Length

Bit

Field Name

Reset

R/W

Description

7:0 PACKET_LENGTH 255 (0xFF) R/W

Indicates the packet length when fixed packet length mode is enabled. If variable packet length mode is used, this value indicates the maximum packet length allowed.

SWRS038C Page 65 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x07: PKTCTRL1 – Packet Automation Control

7:5 PQT[2:0] 0 (0x00) R/W

Preamble quality estimator threshold. The preamble quality estimator increases an internal counter by one each time a bit is received that is different from the previous bit, and decreases the counter by 8 each time a bit is received that is the same as the last bit.

A threshold of 4·PQT for this counter is used to gate sync word detection. When PQT=0 a sync word is always accepted.

4 Reserved 3

CRC_AUTOFLUSH

0 0

R0 R/W

Enable automatic flush of RX FIFO when CRC in not OK. This requires

that only one packet is in the RXIFIFO and that packet length is limited to the RX FIFO size.

When enabled, two status bytes will be appended to the payload of the packet. The status bytes contain RSSI and LQI values, as well as CRC OK.

Controls address check configuration of received packages. Setting 0 (00) 1 (01) 2 (10) 3 (11) Address check configuration No address check

Address check, no broadcast

Address check and 0 (0x00) broadcast Address check and 0 (0x00) and 255 (0xFF) broadcast

2 APPEND_STATUS 1 R/W

1:0 ADR_CHK[1:0] 0 (00) R/W

SWRS038C Page 66 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x08: PKTCTRL0 – Packet Automation Control

7 Reserved 6

WHITE_DATA

1

R0 R/W

Turn data whitening on / off 0: Whitening off 1: Whitening on

5:4 PKT_FORMAT[1:0] 0 (00) R/W Format of RX and TX data Setting Packet format 0 (00) 1 (01)

Normal mode, use FIFOs for RX and TX Synchronous serial mode, used for backwards

compatibility. Data in on GDO0

Random TX mode; sends random data using PN9 generator. Used for test.

Works as normal mode, setting 0 (00), in RX. Asynchronous serial mode. Data in on GDO0 and Data out on either of the GDO0 pins

2 (10)

3 (11)

3 Reserved 2

CRC_EN

0 1

R0 R/W

1: CRC calculation in TX and CRC check in RX enabled 0: CRC disabled for TX and RX

1:0 LENGTH_CONFIG[1:0] 1 (01) R/W Configure the packet length Setting 0 (00) 1 (01) 2 (10)

Packet length configuration

Fixed packet length mode. Length configured in

PKTLEN register

Variable packet length mode. Packet length configured by the first byte after sync word Infinite packet length mode Reserved

3 (11)

0x09: ADDR – Device Address

Bit

Field Name

Reset

R/W

Description

7:0 DEVICE_ADDR[7:0] 0 (0x00) R/W

Address used for packet filtration. Optional broadcast addresses are 0 (0x00) and 255 (0xFF).

0x0A: CHANNR – Channel Number

Bit

Field Name

Reset

R/W

Description

7:0 CHAN[7:0] 0 (0x00) R/W

The 8-bit unsigned channel number, which is multiplied by the channel spacing setting and added to the base frequency.

SWRS038C Page 67 of 96

Bit Field Name Reset R/W

Description CC1100 0x0B: FSCTRL1 – Frequency Synthesizer Control

7:5 Reserved 4:0 FREQ_IF[4:0] 15 (0x0F) R0 R/W The desired IF frequency to employ in RX. Subtracted from FS base frequency in RX and controls the digital complex mixer in the demodulator. fIF=fXOSC⋅FREQ_IF 102The default value gives an IF frequency of 381kHz, assuming a 26.0 MHz crystal.

0x0C: FSCTRL0 – Frequency Synthesizer Control

Bit

Field Name

Reset

R/W

Description

7:0 FREQOFF[7:0] 0 (0x00) R/W

Frequency offset added to the base frequency before being used by the frequency synthesizer. (2s-complement).

Resolution is FXTAL/2 (1.59kHz-1.65kHz); range is ±202 kHz to ±210 kHz, dependent of XTAL frequency.

14

0x0D: FREQ2 – Frequency Control Word, High Byte

Bit Field Name Reset R/W Description 7:6 FREQ[23:22] 0 (00) R FREQ[23:22] is always 0 (the FREQ2 register is less than 36 with 26-27 MHz crystal) 5:0 FREQ[21:16] 30 (0x1E) R/W FREQ[23:22] is the base frequency for the frequency synthesiser in 16increments of FXOSC/2. fcarrier= fXOSC⋅FREQ[23:0] 1620x0E: FREQ1 – Frequency Control Word, Middle Byte

Bit

Field Name

Reset

R/W

Description

7:0 FREQ[15:8] 196 (0xC4) R/W Ref. FREQ2 register

0x0F: FREQ0 – Frequency Control Word, Low Byte

Bit

Field Name

Reset

R/W

Description

7:0 FREQ[7:0] 236 (0xEC) R/W Ref. FREQ2 register

SWRS038C Page 68 of 96

Bit Field Name Reset R/W

Description CC1100 0x10: MDMCFG4 – Modem Configuration

7:6 CHANBW_E[1:0] 2 (0x02) 5:4 CHANBW_M[1:0] 0 (0x00) R/W R/W Sets the decimation ratio for the delta-sigma ADC input stream and thus the channel bandwidth. BWchannel=fXOSC CHANBW_E8⋅(4+CHANBW_M)·2The default values give 203 kHz channel filter bandwidth, assuming a 26.0 MHz crystal. 3:0 DRATE_E[3:0] 12 (0x0C) R/W The exponent of the user specified symbol rate

0x11: MDMCFG3 – Modem Configuration

Bit Field Name Reset R/W Description 7:0 DRATE_M[7:0] 34 (0x22) R/W The mantissa of the user specified symbol rate. The symbol rate is configured using an unsigned, floating-point number with 9-bit mantissa thand 4-bit exponent. The 9 bit is a hidden ‘1’. The resulting data rate is: RDATA(256+DRATE_M)⋅2DRATE_E=⋅f228XOSC The default values give a data rate of 115.051 kBaud (closest setting to 115.2 kBaud), assuming a 26.0 MHz crystal. SWRS038C Page 69 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x12: MDMCFG2 – Modem Configuration

7 DEM_DCFILT_OFF 0 R/W Disable digital DC blocking filter before demodulator.

0 = Enable (better sensitivity)

1 = Disable (current optimized). Only for data rates

≤ 250 kBaud

The recommended IF frequency changes when the DC blocking is disabled. Please use SmartRF® Studio [7] to calculate correct register setting.

6:4 MOD_FORMAT[2:0] 0 (000) R/W The modulation format of the radio signal

Setting Modulation format 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110) 7 (111)

2-FSK GFSK -

ASK/OOK - - - MSK

ASK is only supported for output powers up to -1 dBm MSK is only supported for datarates above 26 kBaud

3 MANCHESTER_EN 0

R/W Enables Manchester encoding/decoding.

0 = Disable 1 = Enable

2:0

SYNC_MODE[2:0]

2 (010)

R/W

Combined sync-word qualifier mode.

The values 0 (000) and 4 (100) disables preamble and sync word

transmission in TX and preamble and sync word detection in RX.

The values 1 (001), 2 (010), 5 (101) and 6 (110) enables 16-bit sync word transmission in TX and 16-bits sync word detection in RX. Only 15 of 16 bits need to match in RX when using setting 1 (001) or 5 (101). The values 3 (011) and 7 (111) enables repeated sync word transmission in TX and 32-bits sync word detection in RX (only 30 of 32 bits need to match). Setting 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110) 7 (111)

Sync-word qualifier mode No preamble/sync

15/16 sync word bits detected 16/16 sync word bits detected 30/32 sync word bits detected No preamble/sync, carrier-sense above threshold

15/16 + carrier-sense above threshold 16/16 + carrier-sense above threshold 30/32 + carrier-sense above threshold

SWRS038C Page 70 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x13: MDMCFG1– Modem Configuration

7 FEC_EN 0 R/W

Enable Forward Error Correction (FEC) with interleaving for packet payload 0 = Disable

1 = Enable (Only supported for fixed packet length mode, i.e. PKTCTRL0.LENGTH_CONFIG=0)

6:4 NUM_PREAMBLE[2:0] 2 (010) R/W Sets the minimum number of preamble bytes to be transmitted Setting 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110)

Number of preamble bytes 2 3 4 6 8 12 16 24

3:2 Reserved 1:0 CHANSPC_E[1:0] 2 (10)

7 (111)

R0

R/W 2 bit exponent of channel spacing

0x14: MDMCFG0– Modem Configuration

Bit Field Name Reset R/W Description 7:0 CHANSPC_M[7:0] 248 (0xF8) R/W 8-bit mantissa of channel spacing. The channel spacing is multiplied by the channel number CHAN and added to the base frequency. It is unsigned and has the format: ∆fCHANNEL=fXOSC⋅(256+CHANSPC_M)⋅2CHANSPC_E 182The default values give 199.951 kHz channel spacing (the closest setting to 200 kHz), assuming 26.0 MHz crystal frequency. SWRS038C Page 71 of 96

Bit Field Name Reset R/W

Description CC1100 0x15: DEVIATN – Modem Deviation Setting

7 Reserved R0 6:4 DEVIATION_E[2:0] 4 (0x04) R/W Deviation exponent 3 Reserved R0 When MSK modulation is enabled: Sets fraction of symbol period used for phase change. Refer to the [7] for correct deviation setting when using SmartRF® Studio software MSK. When 2-FSK/GFSK modulation is enabled: Deviation mantissa, interpreted as a 4-bit value with MSB implicit 1. The resulting frequency deviation is given by: 2:0 DEVIATION_M[2:0] 7 (111) R/W fdev=fxosc⋅(8+DEVIATION_M)⋅2DEVIATION_E 172The default values give ±47.607 kHz deviation, assuming 26.0 MHz crystal frequency. SWRS038C Page 72 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x16: MCSM2 – Main Radio Control State Machine Configuration

7:5 Reserved 4

RX_TIME_RSSI

0

R0 Reserved R/W

Direct RX termination based on RSSI measurement (carrier sense). For ASK/OOK modulation, RX times out if there is no carrier sense in the first 8 symbol periods.

3 RX_TIME_QUAL 0

R/W When the RX_TIME timer expires, the chip checks if sync word is found

when RX_TIME_QUAL=0, or either sync word is found or PQI is set when RX_TIME_QUAL=1. R/W

Timeout for sync word search in RX for both WOR mode and normal RX operation. The timeout is relative to the programmed EVENT0 timeout.

2:0 RX_TIME[2:0] 7 (111)

The RX timeout in µs is given by EVENT0·C(RX_TIME, WOR_RES) ·26/X, where C is given by the table below and X is the crystal oscillator frequency in MHz: Setting 0 (000) 1 (001)

WOR_RES = 0 3.6058 1.8029

WOR_RES = 1 18.0288 9.0144

WOR_RES = 2 32.4519 16.2260

WOR_RES = 3 46.8750 23.4375

2 (010) 0.9014 4.5072 8.1130 11.7188 3 (011) 0.4507 2.2536 4.0565 5.8594 4 (100) 0.22 1.1268 2.0282 2.9297 5 (101) 0.1127 0.5634 1.0141 1.48 6 (110) 0.0563 0.2817 0.5071 0.7324 7 (111)

Until end of packet

As an example, EVENT0=34666, WOR_RES=0 and RX_TIME=6 corresponds to 1.96 ms RX timeout, 1 s polling interval and 0.195% duty cycle. Note that WOR_RES should be 0 or 1 when using WOR because using WOR_RES > 1 will give a very low duty cycle. In applications where WOR is not used all settings of WOR_RES can be used. The duty cycle using WOR is approximated by: Setting 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110) 7 (111)

WOR_RES=0 WOR_RES=1

12.50% 6.250% 3.125% 1.563% 0.781% 0.391% 0.195% NA

1.95% 9765ppm 4883ppm 2441ppm NA NA NA

Note that the RC oscillator must be enabled in order to use setting 0-6, because the timeout counts RC oscillator periods. WOR mode does not need to be enabled.

The timeout counter resolution is limited: With RX_TIME=0, the timeout count is given by the 13 MSBs of EVENT0, decreasing to the 7MSBs of EVENT0 with RX_TIME=6.

SWRS038C Page 73 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x17: MCSM1– Main Radio Control State Machine Configuration

7:6 Reserved 5:4 CCA_MODE[1:0] R0

3 (11) R/W Selects CCA_MODE; Reflected in CCA signal

Setting 0 (00) 1 (01) 2 (10) 3 (11)

Clear channel indication Always

If RSSI below threshold

Unless currently receiving a packet If RSSI below threshold unless currently

receiving a packet

3:2 RXOFF_MODE[1:0] 0 (00) R/W

Select what should happen when a packet has been received Setting 0 (00) 1 (01) 2 (10) 3 (11)

Next state after finishing packet reception

IDLE

FSTXON TX Stay in RX

It is not possible to set RXOFF_MODE to be TX or FSTXON and at the same time use CCA.

1:0

TXOFF_MODE[1:0]

0 (00)

R/W

Select what should happen when a packet has been sent (TX) Setting 0 (00) 1 (01) 2 (10)

Next state after finishing packet transmission IDLE FSTXON

Stay in TX (start sending preamble) RX

3 (11)

SWRS038C Page 74 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x18: MCSM0– Main Radio Control State Machine Configuration

7:6 Reserved 5:4

FS_AUTOCAL[1:0]

0 (00)

R0 R/W

Automatically calibrate when going to RX or TX, or back to IDLE Setting 0 (00) 1 (01) 2 (10) 3 (11)

When to perform automatic calibration Never (manually calibrate using SCAL strobe) When going from IDLE to RX or TX (or FSTXON) When going from RX or TX back to IDLE automatically

Every 4 time when going from RX or TX to IDLE automatically

th

In some automatic wake-on-radio (WOR) applications, using setting 3 (11) can significantly reduce current consumption.

3:2

PO_TIMEOUT

1 (01)

R/W

Programs the number of times the six-bit ripple counter must expire after XOSC has stabilized before CHP_RDYn goes low.

If XOSC is on (stable) during power-down, PO_TIMEOUT should be set so that the regulated digital supply voltage has time to stabilize before CHP_RDYn goes low (PO_TIMEOUT=2 recommended). Typical start-up time for the voltage regulator is 50 us.

If XOSC is off during power-down and the regulated digital supply voltage has sufficient time to stabilize while waiting for the crystal to be stable, PO_TIMEOUT can be set to 0. For robust operation it is recommended to use PO_TIMEOUT=2. Setting 0 (00) 1 (01) 2 (10) 3 (11)

Expire count 1 16 256

Timeout after XOSC start Approx. 2.3 – 2.4 µs Approx. 37 – 39 µs Approx. 149 – 155 µs Approx. 597 – 620 µs

Exact timeout depends on crystal frequency.

1 PIN_CTRL_EN 0 R/W Enables the pin radio control option 0

XOSC_FORCE_ON

0

R/W

Force the XOSC to stay on in the SLEEP state.

SWRS038C Page 75 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x19: FOCCFG – Frequency Offset Compensation Configuration

7:6 Reserved 5 4:3

FOC_BS_CS_GATE FOC_PRE_K[1:0]

1 2 (10)

R0 R/W R/W

If set, the demodulator freezes the frequency offset compensation and clock recovery feedback loops until the CS signal goes high.

The frequency compensation loop gain to be used before a sync word is detected. Setting 0 (00) 1 (01) 2 (10)

Freq. compensation loop gain before sync word

K

2K 3K

2 FOC_POST_K 1 R/W

3 (11) 4K The frequency compensation loop gain to be used after a sync word is detected. Setting 0

Freq. compensation loop gain after sync word Same as FOC_PRE_K

1:0 FOC_LIMIT[1:0] 2 (10) R/W

1 K/2 The saturation point for the frequency offset compensation algorithm: Setting 0 (00) 1 (01) 2 (10) 3 (11)

Saturation point (max compensated offset) ±0 (no frequency offset compensation) ±BWCHAN/8 ±BWCHAN/4 ±BWCHAN/2

Frequency offset compensation is not supported for ASK/OOK; Always use FOC_LIMIT=0 with these modulation formats.

SWRS038C Page 76 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x1A: BSCFG – Bit Synchronization Configuration

7:6 BS_PRE_KI[1:0] 1 (01) R/W

The clock recovery feedback loop integral gain to be used before a sync word is detected (used to correct offsets in data rate): Setting 0 (00) 1 (01) 2 (10)

Clock recovery loop integral gain before sync word

KI

2KI 3KI

5:4 BS_PRE_KP[1:0] 2 (10) R/W

3 (11) 4KI The clock recovery feedback loop proportional gain to be used before a sync word is detected. Setting 0 (00) 1 (01) 2 (10)

Clock recovery loop proportional gain before sync word

KP

2KP 3KP

3 BS_POST_KI 1 R/W

3 (11) 4KP The clock recovery feedback loop integral gain to be used after a sync word is detected. Setting 0

Clock recovery loop integral gain after sync word Same as BS_PRE_KI

2 BS_POST_KP 1 R/W

1 KI /2 The clock recovery feedback loop proportional gain to be used after a sync word is detected. Setting 0

Clock recovery loop proportional gain after sync word Same as BS_PRE_KP

1:0 BS_LIMIT[1:0] 0 (00) R/W

1 KP The saturation point for the data rate offset compensation algorithm: Setting 0 (00) 1 (01) 2 (10) 3 (11)

Data rate offset saturation (max data rate difference) ±0 (No data rate offset compensation performed) ±3.125% data rate offset ±6.25% data rate offset ±12.5% data rate offset

SWRS038C Page 77 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x1B: AGCCTRL2 – AGC Control

7:6 MAX_DVGA_GAIN[1:0] 0 (00) R/W Reduces the maximum allowable DVGA gain.

Setting Allowable DVGA settings 0 (00) 1 (01) 2 (10)

All gain settings can be used

The highest gain setting can not be used The 2 highest gain settings can not be used

5:3 MAX_LNA_GAIN[2:0] 0 (000) R/W

3 (11) The 3 highest gain settings can not be used

Sets the maximum allowable LNA + LNA 2 gain relative to the maximum possible gain. Setting 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110)

Maximum allowable LNA + LNA 2 gain Maximum possible LNA + LNA 2 gain Approx. 2.6 dB below maximum possible gain Approx. 6.1 dB below maximum possible gain Approx. 7.4 dB below maximum possible gain Approx. 9.2 dB below maximum possible gain Approx. 11.5 dB below maximum possible gain Approx. 14.6 dB below maximum possible gain

2:0 MAGN_TARGET[2:0] 3 (011) R/W

7 (111) Approx. 17.1 dB below maximum possible gain These bits set the target value for the averaged amplitude from the digital channel filter (1 LSB = 0 dB). Setting 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110)

Target amplitude from channel filter 24 dB 27 dB 30 dB 33 dB 36 dB 38 dB 40 dB 42 dB

7 (111)

SWRS038C Page 78 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x1C: AGCCTRL1 – AGC Control

7 Reserved 6

AGC_LNA_PRIORITY

1

R0 R/W

Selects between two different strategies for LNA and LNA 2 gain adjustment. When 1, the LNA gain is decreased first. When 0, the LNA 2 gain is decreased to minimum before decreasing LNA gain.

Sets the relative change threshold for asserting carrier sense Setting Carrier sense relative threshold 0 (00) 1 (01) 2 (10)

Relative carrier sense threshold disabled 6 dB increase in RSSI value 10 dB increase in RSSI value

5:4 CARRIER_SENSE_REL_THR[1:0] 0 (00) R/W

3:0 CARRIER_SENSE_ABS_THR[3:0] 0 (0000)

R/W

3 (11) 14 dB increase in RSSI value Sets the absolute RSSI threshold for asserting carrier sense. The 2-complement signed threshold is programmed in steps of 1 dB and is relative to the MAGN_TARGET setting. Setting Carrier sense absolute threshold

(Equal to channel filter amplitude when AGC

has not decreased gain)

-8 (1000) -7 (1001)

Absolute carrier sense threshold disabled 7 dB below MAGN_TARGET setting

… … -1 (1111) 0 (0000) 1 (0001)

1 dB below MAGN_TARGET setting At MAGN_TARGET setting

1 dB above MAGN_TARGET setting

… … 7 (0111)

7 dB above MAGN_TARGET setting

SWRS038C Page 79 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x1D: AGCCTRL0 – AGC Control

7:6 HYST_LEVEL[1:0] 2 (10) R/W

Sets the level of hysteresis on the magnitude deviation (internal AGC signal that determine gain changes). Setting Description 0 (00) 1 (01) 2 (10) 3 (11)

No hysteresis, small symmetric dead zone, high gain Low hysteresis, small asymmetric dead zone, medium gain

Medium hysteresis, medium asymmetric dead zone, medium gain

Large hysteresis, large asymmetric dead zone, low gain

5:4 WAIT_TIME[1:0] 1 (01) R/W

Sets the number of channel filter samples from a gain adjustment has been made until the AGC algorithm starts accumulating new samples. Setting 0 (00) 1 (01) 2 (10)

Channel filter samples 8 16 24

3:2 AGC_FREEZE[1:0] 0 (00)

3 (11) 32

R/W Control when the AGC gain should be frozen.

Setting Function 0 (00) 1 (01) 2 (10) 3 (11)

Normal operation. Always adjust gain when required. The gain setting is frozen when a sync word has been found.

Manually freeze the analogue gain setting and continue to adjust the digital gain.

Manually freezes both the analogue and the digital gain setting. Used for manually overriding the gain.

1:0 FILTER_LENGTH[1:0] 1 (01) R/W

Sets the averaging length for the amplitude from the channel filter. Sets the OOK/ASK decision boundary for OOK/ASK reception. Setting Channel filter

samples 0 (00) 1 (01) 2 (10)

8 16 32

OOK decision 4 dB 8 dB 12 dB 16 dB

3 (11)

0x1E: WOREVT1 – High Byte Event0 Timeout

Bit Field Name Reset R/W Description 7:0 EVENT0[15:8] 135 (0x87) R/W High byte of EVENT0 timeout register tEvent0= 750⋅EVENT0⋅25⋅WOR_RES fXOSC SWRS038C Page 80 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x1F: WOREVT0 –Low Byte Event0 Timeout

7:0 EVENT0[7:0] 107 (0x6B) R/W Low byte of EVENT0 timeout register.

The default EVENT0 value gives 1.0s timeout, assuming a 26.0 MHz

crystal.

0x20: WORCTRL – Wake On Radio Control

Bit

Field Name

Reset

R/W

Description

7 6:4

RC_PD EVENT1[2:0]

1 7 (111)

R/W R/W

Power down signal to RC oscillator. When written to 0, automatic initial calibration will be performed

Timeout setting from register block. Decoded to Event 1 timeout. RC oscillator clock frequency equals FXOSC/750, which is 34.7 – 36 kHz,

depending on crystal frequency. The table below lists the number of clock periods after Event 0 before Event 1 times out. Setting tEvent1 0 (000) 1 (001) 2 (010) 3 (011) 4 (100) 5 (101) 6 (110)

4 (0.111 – 0.115 ms) 6 (0.167 – 0.173 ms) 8 (0.222 – 0.230 ms) 12 (0.333 – 0.346 ms) 16 (0.444 – 0.462 ms) 24 (0.667 – 0.692 ms) 32 (0.8 – 0.923 ms)

3 RC_CAL 1

7 (111) 48 (1.333 – 1.385 ms) R/W Enables (1) or disables (0) the RC oscillator calibration. R0 R/W

Controls the Event 0 resolution as well as maximum timeout of the WOR

module and maximum timeout under normal RX operation:: Setting 0 (00) 1 (01) 2 (10) 3 (11)

Resolution (1 LSB) 1 period (28µs – 29µs) 2 periods (0.ms –0.92 ms) 2 periods (28 – 30 ms) 2 periods (0.91 – 0.94 s)

15105

2 Reserved 1:0

WOR_RES

0 (00)

Max timeout 1.8 – 1.9 seconds 58 – 61 seconds 31 – 32 minutes 16.5 – 17.2 hours

Note that WOR_RES should be 0 or 1 when using WOR because WOR_RES > 1 will give a very low duty cycle.

In normal RX operation all settings of WOR_RES can be used.

SWRS038C Page 81 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x21: FREND1 – Front End RX Configuration

7:6 LNA_CURRENT[1:0] 5:4 LNA2MIX_CURRENT[1:0] 1 (01) R/W Adjusts front-end LNA PTAT current output 1 (01) R/W

Adjusts front-end PTAT outputs

3:2 LODIV_BUF_CURRENT_RX[1:0] 1 (01) R/W Adjusts current in RX LO buffer (LO input to mixer) 1:0

MIX_CURRENT[1:0]

2 (10)

R/W

Adjusts current in mixer

0x22: FREND0 – Front End TX Configuration

Bit

Field Name

Reset

R/W

Description

7:6 Reserved R0 5:4 LODIV_BUF_CURRENT_TX[1:0] 1 (0x01) R/W Adjusts current TX LO buffer (input to PA). The value to

use in this field is given by the SmartRF® Studio software [7]. 3 Reserved 2:0

PA_POWER[2:0]

0 (0x00)

R0 R/W

Selects PA power setting. This value is an index to the PATABLE, which can be programmed with up to 8 different PA settings. In OOK/ASK mode, this selects the PATABLE index to use when transmitting a ‘1’. PATABLE index zero is used in OOK/ASK when transmitting a ‘0’. The PATABLE settings from index ‘0’ to the PA_POWER value are used for ASK TX shaping, and for power ramp-up/ramp-down at the start/end of transmission in all TX modulation formats.

0x23: FSCAL3 – Frequency Synthesizer Calibration

Bit

Field Name

Reset

R/W

Description

7:6 FSCAL3[7:6] 2 (0x02) R/W

Frequency synthesizer calibration configuration. The value to write in this field before calibration is given by the SmartRF® Studio software.

5:4 CHP_CURR_CAL_EN[1:0] 3:0

FSCAL3[3:0]

2 (0x02) R/W Enable charge pump calibration stage when 1 9 (1001)

R/W

Frequency synthesizer calibration result register. Digital bit

vector defining the charge pump output current, on an

FSCAL3[3:0]/4

exponential scale: IOUT = I0·2

Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

SWRS038C Page 82 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x24: FSCAL2 – Frequency Synthesizer Calibration

7:6 Reserved 5 4:0

VCO_CORE_H_EN FSCAL2[4:0]

0 10 (0x0A)

R0 R/W R/W

Choose high (1) / low (0) VCO

Frequency synthesizer calibration result register. VCO current calibration result and override value

Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

0x25: FSCAL1 – Frequency Synthesizer Calibration

Bit

Field Name

Reset

R/W

Description

7:6 Reserved 5:0

FSCAL1[5:0]

32 (0x20)

R0 R/W

Frequency synthesizer calibration result register. Capacitor array setting for VCO coarse tuning.

Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

0x26: FSCAL0 – Frequency Synthesizer Calibration

Bit

Field Name

Reset

R/W

Description

7 Reserved 6:0

FSCAL0[6:0]

13 (0x0D)

R0 R/W

Frequency synthesizer calibration control. The value to use in this

[7]. register is given by the SmartRF® Studio software

0x27: RCCTRL1 – RC Oscillator Configuration

Bit

Field Name

Reset

R/W

Description

7 Reserved 6:0 RCCTRL1[6:0] 0 R0 65 (0x41) R/W RC oscillator configuration.

0x28: RCCTRL0 – RC Oscillator Configuration

Bit

Field Name

Reset

R/W

Description

7 Reserved 6:0 RCCTRL0[6:0] 0 0 (0x00)

R0 R/W RC oscillator configuration.

SWRS038C Page 83 of 96

CC1100 33.2 Configuration Register Details – Registers that Lose Programming in SLEEP State

0x29: FSTEST – Frequency Synthesizer Calibration Control

Bit

Field Name

Reset

R/W

Description

7:0 FSTEST[7:0] (0x59) R/W For test only. Do not write to this register.

0x2A: PTEST – Production Test

Bit

Field Name

Reset

R/W

Description

7:0 PTEST[7:0] 127 (0x7F) R/W

Writing 0xBF to this register makes the on-chip temperature sensor available in the IDLE state. The default 0x7F value should then be written back before leaving the IDLE state. Other use of this register is for test only.

0x2B: AGCTEST – AGC Test

Bit

Field Name

Reset

R/W

Description

7:0 AGCTEST[7:0] 63 (0x3F) R/W For test only. Do not write to this register.

0x2C: TEST2 – Various Test Settings

Bit

Field Name

Reset

R/W

Description

7:0 TEST2[7:0] 136 (0x88) R/W The value to use in this register is given by the SmartRF® Studio

software [7].

0x2D: TEST1 – Various Test Settings

Bit

Field Name

Reset

R/W

Description

7:0 TEST1[7:0] 49 (0x31) R/W The value to use in this register is given by the SmartRF® Studio software [7].

0x2E: TEST0 – Various Test Settings

Bit

Field Name

Reset

R/W

Description

7:2 TEST0[7:2] 1

VCO_SEL_CAL_EN

2 (0x02) 1 1

R/W The value to use in this register is given by the SmartRF® Studio software [7]. R/W

Enable VCO selection calibration stage when 1

0 TEST0[0] R/W The value to use in this register is given by the SmartRF® Studio software [7].

SWRS038C Page 84 of 96

33.3 Status Register Details

CC1100 0x30 (0xF0): PARTNUM – Chip ID

Bit

Field Name

Reset

R/W

Description

7:0 PARTNUM[7:0] 0 (0x00) R Chip part number

0x31 (0xF1): VERSION – Chip ID

Bit

Field Name

Reset

R/W

Description

7:0 VERSION[7:0] 3 (0x03) R Chip version number.

0x32 (0xF2): FREQEST – Frequency Offset Estimate from Demodulator

Bit

Field Name

Reset

R/W

Description

7:0 FREQOFF_EST R

The estimated frequency offset (2’s complement) of the carrier. Resolution is

14

FXTAL/2 (1.59 - 1.65 kHz); range is ±202 kHz to ±210 kHz, dependent of XTAL frequency.

Frequency offset compensation is only supported for 2-FSK, GFSK, and MSK modulation. This register will read 0 when using ASK or OOK modulation.

0x33 (0xF3): LQI – Demodulator Estimate for Link Quality

Bit

Field Name

Reset

R/W

Description

7 CRC OK

R R

The last CRC comparison matched. Cleared when entering/restarting RX mode.

The Link Quality Indicator estimates how easily a received signal can be demodulated. Calculated over the symbols following the sync word

6:0 LQI_EST[6:0]

0x34 (0xF4): RSSI – Received Signal Strength Indication

Bit

Field Name

Reset

R/W

Description

7:0 RSSI R Received signal strength indicator

SWRS038C Page 85 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x35 (0xF5): MARCSTATE – Main Radio Control State Machine State

7:5 Reserved 4:0

MARC_STATE[4:0]

R0 R

Main Radio Control FSM State Value 0 (0x00) 1 (0x01) 2 (0x02) 3 (0x03) 4 (0x04) 5 (0x05) 6 (0x06) 7 (0x07) 8 (0x08) 9 (0x09) 10 (0x0A) 11 (0x0B) 12 (0x0C) 13 (0x0D) 14 (0x0E) 15 (0x0F) 16 (0x10) 17 (0x11) 18 (0x12) 19 (0x13) 20 (0x14) 21 (0x15) 22 (0x16)

State name SLEEP IDLE XOFF VCOON_MC REGON_MC MANCAL VCOON REGON STARTCAL BWBOOST FS_LOCK IFADCON ENDCAL RX RX_END RX_RST TXRX_SWITCH RXFIFO_OVERFLOW FSTXON TX TX_END RXTX_SWITCH TXFIFO_UNDERFLOW

State (Figure 16, page 42) SLEEP IDLE XOFF MANCAL MANCAL MANCAL FS_WAKEUP FS_WAKEUP CALIBRATE SETTLING SETTLING SETTLING CALIBRATE RX RX RX

TXRX_SETTLING RXFIFO_OVERFLOW FSTXON TX TX

RXTX_SETTLING TXFIFO_UNDERFLOW

Note: it is not possible to read back the SLEEP or XOFF state numbers because setting CSn low will make the chip enter the IDLE mode from the SLEEP or XOFF states.

0x36 (0xF6): WORTIME1 – High Byte of WOR Time

Bit

Field Name

Reset

R/W

Description

7:0 TIME[15:8] R High byte of timer value in WOR module

0x37 (0xF7): WORTIME0 – Low Byte of WOR Time

Bit

Field Name

Reset

R/W

Description

7:0 TIME[7:0] R Low byte of timer value in WOR module

SWRS038C Page 86 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x38 (0xF8): PKTSTATUS – Current GDOx Status and Packet Status

7 CRC_OK

R

The last CRC comparison matched. Cleared when entering/restarting RX mode.

6 CS 5 4 3 2

PQT_REACHED CCA SFD

R Carrier sense R R R R

Preamble Quality reached Channel is clear Sync word found

Current GDO2 value. Note: the reading gives the non-inverted value

irrespective of what IOCFG2.GDO2_INV is programmed to.

It is not recommended to check for PLL lock by reading PKTSTATUS[2] with GDO2_CFG=0x0A.

GDO2

1 Reserved 0

R0 R

Current GDO0 value. Note: the reading gives the non-inverted value irrespective of what IOCFG0.GDO0_INV is programmed to.

It is not recommended to check for PLL lock by reading PKTSTATUS[0] with GDO0_CFG=0x0A.

GDO0

0x39 (0xF9): VCO_VC_DAC – Current Setting from PLL Calibration Module

Bit

Field Name

Reset

R/W

Description

7:0 VCO_VC_DAC[7:0] R Status register for test only.

0x3A (0xFA): TXBYTES – Underflow and Number of Bytes

Bit

Field Name

Reset

R/W

Description

7 TXFIFO_UNDERFLOW 6:0

NUM_TXBYTES

R R

Number of bytes in TX FIFO

0x3B (0xFB): RXBYTES – Overflow and Number of Bytes

Bit

Field Name

Reset

R/W

Description

7 RXFIFO_OVERFLOW 6:0

NUM_RXBYTES

R R

Number of bytes in RX FIFO

0x3C (0xFC): RCCTRL1_STATUS – Last RC Oscillator Calibration Result

Bit

Field Name

Reset

R/W

Description

7 Reserved R0 R

Contains the value from the last run of the RC oscillator calibration routine.

For usage description refer to AN047 [4]

6:0 RCCTRL1_STATUS[6:0]

SWRS038C Page 87 of 96

Bit

Field Name

Reset

R/W

Description

CC1100 0x3D (0xFC): RCCTRL0_STATUS – Last RC Oscillator Calibration Result

7 Reserved R0 R

Contains the value from the last run of the RC oscillator calibration routine.

For usage description refer to Aplication Note AN047 [4].

6:0 RCCTRL0_STATUS[6:0]

34 Package Description (QLP 20)

All dimensions are in millimetres, angles in degrees. NOTE: The CC1100 is available in RoHS

lead-free package only.

Figure 31: Package Dimensions Drawing

Package Type

A

A1

A2

D

D1

D2

E

E1

E2

L

T

b

e

0.75 0.005 0.55 3.90 3.65 Min 3.90 3.65 0.45 0.190 0.18 0.23 0.50 QLP 20 (4x4) Typ.

0.85 0.025 0.65 4.00 3.75 2.40 4.00 3.75 2.40 0.55 4.10 3.85 0.95 0.045 0.75 4.10 3.85 Max 0.65 0.245 0.30 Table 39: Package Dimensions

SWRS038C Page 88 of 96

CC1100 34.1 Recommended PCB Layout for Package (QLP 20)

Figure 32: Recommended PCB Layout for QLP 20 Package

Note: Figure 32 is an illustration only and not to scale. There are five 10 mil via holes distributed symmetrically in the ground pad under the package. See also the CC1100EM reference designs ( [5] and [6]). 34.2 Package Thermal Properties

Thermal Resistance

Air velocity [m/s] Rth,j-a [K/W]

0 40.4

Table 40: Thermal Properties of QLP 20 Package

34.3 Soldering Information

The recommendations for lead-free reflow in IPC/JEDEC J-STD-020C should be followed. 34.4 Tray Specification

CC1100 can be delivered in standard QLP 4x4 mm shipping trays.

Tray Specification

Package QLP 20

Tray Width 135.9mm

Tray Height 7.62mm

Tray Length 322.6mm

Units per Tray 490

Table 41: Tray Specification

SWRS038C Page of 96

34.5 Carrier Tape and Reel Specification

CC1100 Carrier tape and reel is in accordance with EIA Specification 481.

Tape and Reel Specification

Package Tape Width Component Hole

Pitch Pitch QLP 20

12 mm

8 mm

4 mm

Reel

Diameter 13 inches

Units per Reel 2500

Table 42: Carrier Tape and Reel Specification

35 Ordering Information

Chipcon Part Number

TI Part Number

Description

Minimum Order Quantity (MOQ)

CC1100-RTY1 CC1100RTK CC1100 QLP20 RoHS Pb-free 490/tray CC1100-RTR1 CC1100RTKR CC1100 QLP20 RoHS Pb-free 2500/T&R CC1100-1150DK-433 CC1100-1150DK-433 CC1100-1150DK-868 CC1100-1150DK-868 CC1100EMK-433 CC1100EMK-868 CC1150EMK-433 CC1150EMK-868

CC1100EMK-433 CC1100EMK-868 CC1150EMK-433 CC1150EMK-868

490 (tray) 2,500 (tape and reel)

1 1 1 1 1 1

CC1100/CC1150 -433 MHz Development Kit CC1100/CC1150 -868/915 MHz Development Kit

CC1100 -433 MHz Evaluation Module Kit CC1100 -868/915 MHz Evaluation Module Kit CC1150 -433 MHz Evaluation Module Kit CC1150 -868/915 MHz Evaluation Module Kit Table 43: Ordering Information

SWRS038C Page 90 of 96

CC1100 36 References

[1] CC1100 Errata Notes (swrz012.pdf)

[2] AN001 SRD Regulations for Licence Free Transceiver Operation (swra090.pdf)

[3] AN039 Using the CC1100 in the European 433 and 868 MHz ISM Bands (swra0.pdf)

[4] AN047 CC1100/CC2500 – Wake-On-Radio (swra126.pdf)

[5] CC1100EM 315 - 433 MHz Reference Design 1.0 (swrr037.zip)

[6] CC1100EM 868 – 915 MHz Reference Design 2.0 (swrr038.zip)

[7] SmartRF® Studio (swrc046.zip)

[8] CC1100 CC2500 Examples Libraries (swrc021.zip)

[9] CC1100/CC1150DK, CC1101DK, and CC2500/CC2550DK Examples and Libraries User

Manual (swru109.pdf)

SWRS038C Page 91 of 96

CC1100 37 General Information

37.1 Document History

Revision

Date

Description/Changes

SWRSO38C

2008-05-22 Added product information on front page

Added info to ordering information SWRS038B 2007-07-09 Changes in the General Principle of Matrix Interleaving figure. Changes in Table: Bill Of Materials for the Application Circuit

Changes in Figure: Typical Application and Evaluation Circuit 868/915 MHz Changed the equation for channel spacing in the MDMCFG0 register. kbps replaced by kBaud throughout the document.

Some of the sections have been re-written to be easier to read without having any new info added.

Absolute maximum supply voltage rating increased from 3.6 V to 3.9 V.

Changed the frequency accuracy after calibration for the low power RC oscillator from ±0.3 to ±1 %.

Updates to sensitivity and current consumption numbers listed under Key Features. FSK changed to 2-FSK throughout the document. Updates to the Abbreviation table.

Updates to the Electrical Specifications section. Added info about RX and TX latency.

Added info in the Pinout Overview table regarding GDO0 and GDO2.

Changed current consumption in RX and TX in the simplified state diagram.

Added info about default values after reset vs. optimum register settings in the Configuration Software section

Changes to the SPI Interface Timing Requirements. Info added about tsp,pd

The following figures have been changed: Configuration Registers Write and Read Operations, SRES Command Strobe, and Register Access Types.

In the Register Access section, the address range is changed.

In the PATABLE Access section, info is added regarding limitations on output power programming when using PA ramping.

In the Packet Format section, preamble pattern is changed to 10101010 and info about bug related to turning off the transmitter in infinite packet length mode is added. Added info to the Frequency Offset Compensation section.

Added info about the initial value of the PN9 sequence in the Data Whitening section.

In the Packet Handling in Transmit Mode section, info about TX FIFO underflow state is added. Added section Packet Handling in Firmware.

0x00 is added as a valid PATABLE setting in addition to 0x30-0x3F when using ASK. In the PQT section a change is made as to how much the counter decreases. The RSSI value is in dBm and not dB.

The whole CS Absolute Threshold section has been re-written and the equation calculating the threshold has been removed.

Added info in the CCA section on what happens if the channel is not clear. Added info to the LQI section for better understanding.

Removed all references to the voltage regulator in relation with the CHP_RDYn signal, as this signal is only related to the crystal.

Removed references to the voltage regulator in the figures: Power-On Reset and Power-On Reset with SRES. Changes to the SI line in the Power-On Reset with SRES figure Added info on the three automatic calibration options.

Removed the autosync feature from the WOR section and added info on how to exit WOR mode. Also added info about minimum sleep time and references to App. Note 047 together with info about calibration of the RC oscillator.

The figure: Event 0 and Event 1 Relationship is changed for better readability. Info added to the Timing section related to reduced calibration time.

The Output Power Programming section is divided into 2 new sections; Output Power Programming and Shaping and PA Ramping.

Added info on programming of PATABLE when using OOK, and about PATABLE when entering SLEEP mode.

2 new figures added to the Shaping and PA Ramping section: Shaping of ASK Signal and PA Ramping, together with one new table: PATABLE Settings Used Together with ASK Shaping and PA Ramping.

Changed made to current consumption in the Optimum PATABLE Settings for Various Output Power Levels and Frequency Bands table. Added section Layout Recommendations.

In section General Purpose / Test Output Control Pins: Added info on GDO pins in SLEEP state.

Better explanation of some of the signals in the GDOx Signal Selection table. Also added some more signals.

SWRS038C Page 92 of 96

Revision

Date

Description/Changes

CC1100 SWRSO38C

2008-05-22 Added product information on front page

Asynchronous transparent mode is called asynchronous serial mode throughout the document.

Removed comments about having to use NRZ coding in synchronous serial mode. Added info that Manschester encoding cannot be used in this mode.

Added a third calibration method plus additional info about the 3 methods in the Frequency Hopping and Multi-Channel Systems section.

Added info about differential antenna in the Low Cost Systems section. Changes number of commands strobes from 14 to 13.

Changed description of SFRX, SFTX, SWORRST, and SNOP in the Command Strobes table. Added two new registers; RCCTRL1_STATUS and RCCTRL0_STATUS Changed field name and/or description of the following registers:

PKTCTRL1, MCSM2, MCSM0, WORCTRL, FSCAL3, FSCAL2, FSCAL1, and TEST0. Changed tray width in the Tray Specification table. Added references.

Updates to Electrical Specifications due to increased amount of measurement data. SWRS038A 2006-06-20 Updated application circuit for 868 MHz. Updated balun component values. Updated current consumption figures in state diagrams. Added figures to table on SPI interface timing requirements. Added information about SPI read.

Added table for channel filter bandwidths. Added figure showing data whitening.

Updates to text and included new figure in section on arbitrary length configuration. References to SAFC strobe removed.

Added additional information about support of ASK modulation. Added information about CRC filtering.

Added information about sync word qualifier.

Added information on RSSI offset, RSSI update rate, RSSI calculation and typical RSSI curves. Added information on CS and tables with register settings versus CS threshold. Updates to text and included new figures in section on power-on start-up sequence. Changes to wake-on-radio current consumption figures under electrical specifications. Updates to text in section on data FIFO.

Corrected formula for calculation of output frequency in Frequency Programming section. Added information about how to check for PLL lock in section on VCO. Corrected table with PATABLE setting versus output power. Added typical selectivity curves for selected datarates.

Added information on how to interface external clock signal. Added optimal match impedances in RF match section.

Better explanation of some of the signals in table of GDO signal selection. Also added some more signals.

Added information on system considerations.

Added CRC_AUTOFLUSH option in PCTRL1 register.

Added information on timeout for sync word search in RX in register MCSM2.

Changes to wake-on-radio control register WORCTRL. WOR_RES[1:0] settings 10 b and 11b changed to NA.

Added more detailed information on PO_TIMEOUT in register MCSM0.

Added description of programming bits in registers FOCCFG, BSCFG, AGCCTRL2, AGCCTRL1, AGCCTRL0, FREND1, FSCAL3. 1.0

2005-04-25 First preliminary Data Sheet release

Table 44: Document History

SWRS038C Page 93 of 96

37.2 Product Status Definitions

Data Sheet Identification

Product Status

Definition

CC1100 This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.

Advance Information

Planned or Under Development

Preliminary Engineering Samples This data sheet contains preliminary data, and supplementary

and Pre-Production data will be published at a later date. Chipcon reserves the right Prototypes to make changes at any time without notice in order to improve

design and supply the best possible product. The product is not yet fully qualified at this point. No Identification Noted

Full Production

This data sheet contains the final specifications. Chipcon

reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. This data sheet contains specifications on a product that has been discontinued by Chipcon. The data sheet is printed for reference information only.

Obsolete Not In Production

Table 45: Product Status Definitions

SWRS038C Page 94 of 96

CC1100 38 Address Information

Texas Instruments Norway AS Gaustadalléen 21 N-0349 Oslo NORWAY

Tel: +47 22 95 85 44 Fax: +47 22 95 85 46

Web site: http://www.ti.com/lpw

39 TI Worldwide Technical Support Internet

TI Semiconductor Product Information Center Home Page: support.ti.com

TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

Product Information Centers

Americas Phone: +1(972) 4-5580 Fax: +1(972) 927-6377 Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa Phone:

Belgium (English) +32 (0) 27 45 32 Finland (English) +358 (0) 9 25173948 France +33 (0) 1 30 70 11 Germany +49 (0) 8161 80 33 11 Israel (English) 180 949 0107 Italy 800 79 11 37 Netherlands (English) +31 (0) 6 87 95 45 Russia +7 (0) 95 363 4824 Spain +34 902 35 40 28 Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99 Fax: +49 (0) 8161 80 2045

Internet: support.ti.com/sc/pic/euro.htm Japan Fax International +81-3-3344-5317 Domestic 0120-81-0036 Internet/Email International support.ti.com/sc/pic/japan.htm Domestic www.tij.co.jp/pic

SWRS038C Page 95 of 96

Asia Phone

CC1100 International +886-2-23786800 Domestic Toll-Free Number Australia 1-800-999-084 China 800-820-8682 800-96-5941 India +91-80-51381665 (Toll) Indonesia 001-803-8861-1006 Korea 080-551-2804 Fax +886-2-2378-6808 Email Internet support.ti.com/sc/pic/asia.htm

Malaysia New Zealand Philippines Singapore Taiwan Thailand 1-800-80-3973 0800-446-934 1-800-765-7404 800-886-1028 0800-006800 001-800-886-0010

tiasia@ti.com or ti-china@ti.com

SWRS038C Page 96 of 96

IMPORTANTNOTICE

TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements,andotherchangestoitsproductsandservicesatanytimeandtodiscontinueanyproductorservicewithoutnotice.Customersshouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.AllproductsaresoldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment.

TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandardwarranty.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwheremandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed.

TIassumesnoliabilityforapplicationsassistanceorcustomerproductdesign.Customersareresponsiblefortheirproductsand

applicationsusingTIcomponents.Tominimizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovideadequatedesignandoperatingsafeguards.

TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright,orotherTIintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.InformationpublishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesorawarrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI.

ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompaniedbyallassociatedwarranties,conditions,limitations,andnotices.Reproductionofthisinformationwithalterationisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.

ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesfortheassociatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements.

TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonablybeexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverningsuchuse.Buyersrepresentthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and

acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproductsandanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybeprovidedbyTI.Further,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsinsuchsafety-criticalapplications.

TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsarespecificallydesignatedbyTIasmilitary-gradeor\"enhancedplastic.\"OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary

specifications.BuyersacknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyattheBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsaredesignatedbyTIascompliantwithISO/TS16949requirements.Buyersacknowledgeandagreethat,iftheyuseanynon-designatedproductsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements.

FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions:ProductsAmplifiers

DataConvertersDSP

ClocksandTimersInterfaceLogic

PowerMgmtMicrocontrollersRFID

RF/IFandZigBee®Solutions

amplifier.ti.comdataconverter.ti.comdsp.ti.comwww.ti.com/clocksinterface.ti.comlogic.ti.compower.ti.commicrocontroller.ti.comwww.ti-rfid.comwww.ti.com/lprfApplicationsAudio

AutomotiveBroadbandDigitalControlMedicalMilitary

OpticalNetworkingSecurityTelephony

Video&ImagingWireless

www.ti.com/audiowww.ti.com/automotivewww.ti.com/broadbandwww.ti.com/digitalcontrolwww.ti.com/medicalwww.ti.com/militarywww.ti.com/opticalnetworkwww.ti.com/securitywww.ti.com/telephonywww.ti.com/videowww.ti.com/wirelessMailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265

Copyright©2008,TexasInstrumentsIncorporated

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务