RelationshipbetweenQuark-MesonCouplingModelandQuantum
Hadrodynamics
KoichiSaito
TohokuCollegeofPharmacy,Sendai981-8558,Japan
arXiv:nucl-th/0207053v1 17 Jul 2002(Received)
Usingthequark-mesoncoupling(QMC)model,westudynuclearmatterfromthepointofviewofquarkdegreesoffreedom.Performingare-definitionofthescalarfieldinmatter,wetransformQMCtoaQHD-typemodelwithanon-linearscalarpotential.ThepotentialsobtainedfromQMCarecomparedwiththoseoftherelativisticmean-fieldmodels.
Sinceatpresentrigorousstudiesofquantumchromodynamics(QCD)arelimitedtomattersystemwithhightemperatureandzerobaryondensity,itisimportanttobuildmodelswhichhelptobridgethediscrepancybetweennuclearphenomenologyandQCD.Wehaveproposedarelativisticquarkmodelfornuclearmatterandfinitenuclei,thatconsistsofnon-overlappingnucleonbagsboundbytheself-consistentexchangeofisoscalar,scalar(σ)andvector(ω)mesonsinmean-fieldapproximation(MFA)–thismodeliscalledthequark-mesoncoupling(QMC)model.1)Ontheotherhand,recenttheoreticalstudiesshowthatvariouspropertiesoffinitenucleicanbeverywelldescribedbytherelativisticmean-field(RMF)models,i.e.,Quantumhadrodynamics(QHD).2)Inthisletter,weconsiderrelationshipbetweenQMCandQHDandstudyhowtheinternalstructureofthenucleonshedsitseffectoneffectivenuclearmodels.
Inourpreviousworks,1)theMITbagmodelhasbeenusedtodescribethequarkstructureofthenucleon.Sincetheconfinedquarksinteractwiththescalarfield,σ,
⋆,inQMCisgivenbyafunctionofσinmatter,theeffectivenucleonmass,MN
throughthequarkmodelofthenucleon.(Althoughthequarksalsointeractwiththeωmeson,ithasnoeffectonthenucleonstructureexceptforashiftinthenucleonenergy.1))The(relativistic)constituentquarkmodel(CQM)isanalternativemodelforthenucleon.Recently,ShenandToki3)haveproposedanewversionofQMC–thequarkmean-field(QMF)model,whereCQMisusedtodescribethenucleon.
Inthepresentstudy,aswellasthebagmodel(BM),wewanttousetherela-tivisticCQMwithconfiningpotentials,V(r),ofasquarewell(SW)andaharmonicoscillator(HO)toseethedependenceofthematterpropertiesonthequarkmodel.Itisassumedthatthelight(uord)quarkmass,mq,is300MeVinCQM,whilemq=0MeVinBM.Furthermore,weintroduceaLorentz-vectortypeconfiningpotential,whichisproportionaltoγ0,aswellasthescalarone:
V(r)=(1+βγ0)U(r),
(1)
wherethepotential,U(r),isgivenbySWorHOandβ(0≤β<1)isaparametertocontrolthestrengthoftheLorentz-vectortypepotential.WeassumethattheshapeoftheLorentz-vectortypeconfiningpotentialisthesameasthatofthescalartype
typesetusingPTPTEX.sty 2one. Letters InSW,thesolutionforaquarkfield,ψq,canbecalculateda`laBogolioubov.4)ThepotentialisgivenbyU(r)=0forr≤RandMforr>R,whereRistheradiusofthesphericalwellandMistheheightofthepotentialoutsidethewell.Afterfinishingallcalculations,thelimitM→∞istaken.5)ThissystemmaybedescribedbyLagrangiandensity ¯q(iγ·∂−mq)ψqθ(R−r)−1LSW=ψ (1−β)(E−mq) todeterminethequarkenergyisgivenby 2cr 2 (ctheoscillatorstrength),acondition c. (4) Thec.m.energycanbeevaluatedexactly,asinthenon-relativisticharmonicoscil-lator,anditisjustonethirdofthetotalenergy.7)Thus,thenucleonmassisgiven byMN=2E−Eg,whereEgdescribesgluonfluctuationcorrections.7) FortheMITbagmodeltherearemanygoodreviews.5)InBM,wetakemq=0MeVandβ=0.(EveninBMitispossibletoincludetheLorentz-vectortypepotentialusingEqs.(2)and(3).However,ifweusealargeβinBM,itishardtogetgoodvaluesofthenuclearmatterproperties.) Nowweconsideraniso-symmetricnuclearmatterwithFermimomentumkF, 3/3π2(ρthenuclearmatterdensity).Then,thetotalwhichisgivenbyρB=2kFB energypernucleon,Etot,canbewrittenas1) Etot= 4 ⋆2(σ)MN m2 2+k+σ 2m2ω ρB,(5) ⋆iscalculatedbythequarkmodel.Theσandωmesonmasses,mandm,whereMNσω aretakentobe550MeVand783MeV,respectively.Theωfieldisdeterminedbybaryonnumberconservation:ω=gωρB/m2ω(gωistheω-nucleoncouplingconstant),whilethescalarmean-fieldisgivenbyaself-consistencycondition:(∂Etot/∂σ)=0.1) Letters3 InSW,wesettheradiusofthepotentialtobeR=0.8fmanddetrminezsoastofitthefreenucleonmass,MN(=939MeV).Theparameterβischosentobe0and0.5toexaminetheeffectoftheLorentz-vectortypeconfiningpotential.Wefindthatz=4.396and5.1forβ=0and0.5,respectively.InHO,therearetwoadjustableparameters,candEg.Wedeterminethoseparameterssoastofitthefree 2=0.6nucleonmassandtheroot-mean-square(charge)radiusofthefreeproton:rN fm2.8)(rNiscalculatedbythequarkwavefunction.)Wefindthatc=1.591fm−3andEg=344.7MeVforthefreenucleon.Innuclearmatter,wekeepcandEgconstantandthequarkenergyEvaries,dependingonthescalarfield.InBM,thebagconstant,B,andtheparameter,z,arefixedtoreproducethefreenucleonmass.AsinSW,wechoosethebagradiusofthefreenucleontobe0.8fm.WefindB1/4=170.3MeVandz=3.273.1) Nowweareinapositiontode-⋆ TableI.Couplingconstants,MNandK.Theterminethecouplingconstants:theσ-⋆ 2,andg2effectivenucleonmass,MN,iscalculatednucleoncouplingconstant,gσω atρ0.Thenuclearincompressibility,K,is arefixedtofitthenuclearbindingen-quotedinMeV.TheSWmodelwithβ= ergy(−15.7MeV)atthesaturationden-0(0.5)isdenotedbySW0(5). sity(ρ0=0.15fm−3)fornuclearmatter.22⋆ gσgωMN/MNK Thecouplingconstantsandsomecalcu-latedpropertiesformatterarelistedinTableI.Thepresentquarkmodelscanprovidegoodvaluesofthenuclearin-compressibility,K. InSWandBMwithmasslessquarks,thequarkscalardensityinthenucleon1)vanishesinthelimitβ→1,whichmeansthattheσmesondoesnotcoupletothenucleon.9)Thisfactimpliesthatasβislargertheσ-nucleoncouplingisweakerinmatter.Thus,wecanconcludethatqualitativelyalargemixtureoftheLorentz-vectortypeconfiningpotentialleadstoaweakscalarmean-fieldandhencealargeeffectivenucleonmassinnuclearmatter.SinceinMFAasmalleffectivenucleonmass(andhenceastrongscalarfield)isfavorabletofitvariouspropertiesoffinitenuclei,2)theconfiningpotentialincludingastrongLorentz-vectortypeonemaynotbesuitablefordescribinganuclearsystem. ThemaindifferencebetweenQMCandQHDathadroniclevel1)liesinthedependenceofthenucleonmassonthescalarfieldinmatter.Byperformingare-definitionofthescalarfield,theQMCLagrangiandensity1)canbecastintoaformsimilartoaQHD-typemean-fieldmodel,inwhichthenucleonmassdependsonthescalarfieldlinearly,withself-interactionsofthescalarfield.10)InQMC,the ⋆nucleonmassinmatterisgivenbyafunctionofσ,MN,QMC(σ),throughthequark modelofthenucleon,whileinQHDthemassdependsonascalarfieldlinearly,⋆MN,QHD=MN−g0φ(φisthescalarfieldinaQHD-typemodel).Hence,totransformQMCintoaQHD-typemodel,wecanapplyare-definitionofthescalarfield, ⋆ g0φ(σ)=MN−MN,QMC(σ), (6) toQMC,whereg0isaconstantchosensoastonormalizethescalarfieldφinthe 4Letters ⋆limitσ→0:φ(σ)=σ+O(σ2).Thus,g0isgivenbyg0=−(∂MN,QMC/∂σ)σ=0.In QMC,wefindg0=gσforSWandBM,whileg0=2 2 2 dr[(∇σ)2+m2σσ]= dr 1 2 2m2σσ(φ) andh(φ)= ∂σ mσ NotethatinuniformlydistributednuclearmatterthederivativeterminEscldoes notcontribute.(TheeffectofthistermonthepropertiesoffinitenucleihasbeenstudiedinRef.10).)NowQMCcanbere-formulatedintermsofthenewscalarfield,φ,anditisofthesameformasQHDwiththenon-linearscalarpotential,Us(φ),andthecoupling,h(φ),tothegradientofthescalarfield.(Notethatsincethisre-definitionofthescalarfielddoesnotconcernthevectorinteraction,theenergyoftheωfield(seeEq.(5))isnotmodified.) TheZimanyi-Moszkowski(ZM)model11)isagoodexample.Byre-definigthescalarfield,ZMcanbeexactlytransformedtoaQHD-typemodelwithanon-linearpotential.SincetheeffectivenucleonmassinZMisgivenby11) ⋆ =MN,ZM ∂φ .(8) MN 1+g′σ andσ(φ)= φ 2 m2σ φ 1−4dφ Letters5 withd=bgσ/aMN.Thissatisfiesthecondition:σ→0inthelimitφ→0.Thenon-linearpotentialisthuscalculated Us(φ)= = m2σ d m2σ , φ3+ 5 2 3 φ4+O(gσ), (14) MN wherer=b/a. TableII.Parametersa,b,κandλ. a b κ(fm−1) λ MN Thestandardformofthenon-linear scalarpotentialisusuallygivenbyUs(φ)= 1 6φ3+ λ 6Letters 32.52 Us(φ) (fm)1.510.50-0.5-1-1-0.50φ (fm) -1 -40.51Fig.1.Non-linearscalarpotentialsgenerated byQMC.ThesolidcurveshowsUs= m2σ φ2.The dashedcurvewithopen(solid)circlesisforG2(NLB),12)whilethedashedonewith-outanymarksisforPM3.13)ThedashedcurvewithcrossesisforZM.11)Thepo-tentialsinTM114)andNL115)arerespec-tivelyshownbythedottedanddot-dashedcurves. 2 ifthepotentialduetotheinternalstructureofthenucleoncouldbeinferredbyanalyzingexperimentaldatainthefuture. 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务