Informa Ltd Registered in England and Wales Registered Number: 10729 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK
International Journal of ProductionResearch
Publication details, including instructions for authors andsubscription information:
http://www.tandfonline.com/loi/tprs20A gradient search and column
generation approach for the build–packplanning problem with approved
vendor matrices and stochastic demand
G. Sun , L.H. Lee , E.P. Chew & J. Shao
a
a
a
a
a
Department of Industrial and Systems Engineering , NationalUniversity of Singapore , Singapore, 119260Published online: 03 Sep 2009.
To cite this article: G. Sun , L.H. Lee , E.P. Chew & J. Shao (2010) A gradient search and columngeneration approach for the build–pack planning problem with approved vendor matricesand stochastic demand, International Journal of Production Research, 48:19, 5783-5807, DOI:10.1080/002070903049381To link to this article: http://dx.doi.org/10.1080/002070903049381PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.
This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditionsDownloaded by [Loughborough University] at 15:47 05 January 2015 InternationalJournalofProductionResearchVol.48,No.19,1October2010,5783–5807
RESEARCHARTICLE
Agradientsearchandcolumngenerationapproachforthebuild–packplanningproblemwithapprovedvendormatricesandstochasticdemand
G.Sun*,L.H.Lee,E.P.ChewandJ.Shao
DepartmentofIndustrialandSystemsEngineering,NationalUniversityofSingapore,
Singapore,119260
Downloaded by [Loughborough University] at 15:47 05 January 2015 (Received1August2008;finalversionreceived22February2009)
Westudyaproductionplanningproblemofproductassemblywithrandomdemand,wherethecustomerschoosetheirpreferredsuppliersforpairsofinter-dependentcomponentsthroughtheapprovedvendormatrix.Theproblemistodevelopproductionplansthatminimisetheexpectedtotalshortageandholdingcostswhileobservingthematrixrestrictionsandlimitedcomponentsupplies.Weprovideamathematicalprogrammingformulationoftheproblemwithalargenumberofdecisionvariables,whosecostfunctionisthesolutionofaparametricstochastictransportationproblem.Wepresentagradient-basedinterior-pointapproachtosolvethisproblemwherethegradientisestimatedbytheshadowpricefromthesolutionofsuchatransportationproblem.Acolumngenerationschemeisintegratedintotheapproachtohandlethelargeproblemissue.Computationalresultsshowthatouralgorithmsignificantlyimprovesthecomputationaltimewhencomparedwiththeapproachwithoutcolumngeneration.Inaddition,wealsodiscusssomeextensionsofthebasicproblemtothemulti-periodrollinghorizoncase.
Keywords:geneticalgorithms;inventorycontrol;simulationtheory;simulation;cycletimereduction;dispatchingrules;evolutionaryalgorithms;logistics
1.Introduction
Manufacturerstodaycompeteinathin-margin,commoditisedmarket.Ontheonehand,theyneedtorespondtocustomerdemandasquicklyaspossible,sousuallytheproductionplanneedstobemadewithoutfullknowledgeoffuturedemand.Ontheotherhand,theyoftenoffertheircustomersproductflexibilityoptionsasacompetitiveadvantage.Theseincentives,however,usuallyaddcomplicationstotheproductionplanningprocess.Inthispaperwestudyaclassofproductionplanningproblemsofemergingimportanceincurrentmanufacturingpractices.Theend-productofconcernisanassemblyofanumberofcomponentsandeachcomponentisusuallyprovidedbymultiplevendorsonalong-termcontractbasis.Themanufacturerthentests,assemblesandpackstheproductsforitscustomers.Tomaintaincompetitiveadvantage,themanufacturerlooksintoprovidingitscustomersproductflexibilitybygivingthemthefreedomtospecifytheirpreferredcomponentvendorsthroughanapprovedvendormatrix(AVM)(seeexampleinLeeetal.(2005a)).Thebuild-typeisdefinedfromthemanufacturer’spointofviewasthesetof
*Correspondingauthor.Email:sun.gang@gmail.com
ISSN0020–73print/ISSN1366–588Xonlineß2010Taylor&Francis
DOI:10.1080/002070903049381http://www.informaworld.com
5784G.Sunetal.
end-productsusingthesamecombinationofvendors,whiletheorder-typeisdefinedfromthecustomers’sideasthesetofend-productssatisfyingthecorrespondingAVMrequire-ment.Themappingrelationshipbetweenbuild-typesandorder-typesismany-to-many,thatis,oneorder-typemightbesatisfiedbyseveralbuild-types,andonebuild-typemightbeassignedtoseveralorder-types.
Theproblemscenarioisdescribedasfollows.Theplanningprocesscanbedividedintotwomainphases.Thefirstiscalledthebuild-planningphase,inwhichthetargetlevelforeachbuild-typetobebuiltisdetermined,subjecttotheconstraintsofcomponentsupplies.Thesecondphaseiscalledthepack-planningphase,inwhichbuild-typesaresimplyassignedasorder-typestomeetcustomerdemand,observingtheAVMrequirements.Duetothevolatilityofthemarket,thefirstphasemustbedonebeforefullknowledgeofthecustomerdemands.Oncethebuildplanisissued,themanufacturerstartstoassembletheproductsaccordingtothebuildplan.Althoughthecustomerdemandsareunknowninthefirstphase,weassumethedistributionsareavailableeitherfromestimationorprediction.Whencustomerdemandsarerealised,themanufacturerthenpacksthebuild-typesintoorder-types(secondphase).Thetotalcostofinterestcontainstheshortagecostforunfulfilleddemandsandtheholdingcostforexcessproduction.Thesecondphasecanbemodeledasatransportationproblem,whichdetermineshowtoassignbuild-typesasorder-typeswithminimalcost.Theoptimisationofthefirstphasecanbemodeledasabuild–packplanningproblem,thatis,giventhedistributionsofthefuturecustomerdemands,determinethetargetlevelsforallbuild-typessoastominimisethetotalcostonexpectation,subjecttocomponentavailability.Ourmainconcernintherestofthispaperfocusesonsolvingthebuild–packplanningproblem.
Thekeycharacteristicsofourbuild–packproblemarethehighproliferationofbuild-typesandthecomplexityofproductionplanningimposedbyAVMs.Theproduction-planningliteratureaddressingtheimpactofapprovedvendormatricesisratherlimited.Muchoftheearlyworkisfocusedonthemodelingandsolutionofhierarchicalplanningandschedulingproblems.Sincethesetofcustomerdemandsservedbyeachbuild-typeoverlapseachother,ahierarchicalproductionplanning(HPP)approach(HaxandMeal1975,Graves1982)doesnotapply.Chu(1995)consideredthecasewherecustomerscanspecifytheirpreferredsuppliersforindividualcomponents,butdoesnotexplicitlyaddresstheproblemofhighbuild-typeproliferation.Leeetal.(2005a)firstintroducedthedeterministicversionofthemulti-periodbuild–packproblemforshort-termproductionplanningwithamoregeneralformoftheapproved-vendorlist,i.e.theAVM.Theyformulatedtheproblemasatotaltardinessproblem(Wang1995),andthecolumngenerationtechnique(GilmoreandGomory1961,NemhauserandWidhelm1971)isthenusedtosolvethelinearmodelforanoptimalbuildandpackschedule.Further,Leeetal.(2005b)thenshowedthatthisbuild–packproblemhasanequivalentmulti-commoditynetworkflowrepresentation,andasolutionprocedureusingmulti-stagebenderdecompositionwasthendeveloped.
Todealwiththeuncertaintyofcustomerdemands,ageneralapproachcommonlyusedformodelingstochasticplanningproblemsisthescenario-basedstochasticlinear-programming(SLP).ApplicationsofSLPinproductionplanningincludestochasticproductmixplanning(Dantzig1963,RockafellaandWets1985),stochasticHPP(Kiraetal.1997),delayedproductdifferentiation(SwaminathanandTayur1998),multi-periodproductionplanning(Petersetal.1977)andmanpowerplanning(KaoandQueyranne1986).InSLP,futureuncertaintyismodeledasafinitesetofpossibleoutcomesorscenarios,eachwithanassociatedprobabilityofoccurrence.Theobjectiveistominimise
Downloaded by [Loughborough University] at 15:47 05 January 2015 InternationalJournalofProductionResearch5785
Downloaded by [Loughborough University] at 15:47 05 January 2015 thetotalcostsofproductiononexpectationoverallthepossibleoutcomes.Inthismannertheproblemcanbeformulatedasalarge-scalelinearprogramordeterministicequivalentprogram(Wets1974),andsolutionapproachessuchastheL-shapedmethod(SlykeandWets1969)havebeendevelopedtosolvesuchformulations.Suchanapproach,however,isknowntobecomputationallyefficientonlywhenthenumberofpossibleoutcomes(thesamplespace)isoflimitedsize.Therefore,theapplicationoftheSLPmodelingapproachpresentsanadditionaldifficultyinourcaseduetothehighbuild-typeproliferationinourproblem.Ontheotherhand,worksuchasthatofMetters(1997),whichconsidersproductionplanningwithstochasticseasonaldemand,andthatofHodgesandMoore(1970),whichconsidersstochasticproduct-mixplanning,usesthenews-vendormodelinclassicalinventorytheoryasthebasicapproachforconsideringstochasticdemand.Alongthisline,Ngetal.(2006)developedarealisticmedium-termplanningmodelwhichaccountsforbothAVMsandstochasticcustomerdemand.Theyprovidedamixed-integerformulationoftheproblem,whoselinearapproximationandrelaxationissolvedusingthecolumngenerationmethod,andabranch-and-priceframeworkisthensetuptogeneratefeasiblesolutionstotheproblem.
Inthispaperweproposeaninterior-pointapproachwhichsolvesthebuild–packplanningproblemusingagradientsearchmethod.Theproblemisformulatedasanonlinearprogrammingproblemwhoseobjectivefunction,whichhasnoexplicitform,ismodeledasaparametricstochastictransportationproblem.Thegradientofinterestisestimatedfromaveragingthesolutionsofanumberofsuchtransportationproblemswithrandomlygenerateddemands.Thecolumngenerationtechniqueisappliedtohandlethelargeproblemsize.Thewholeproblem-solvingprocedurecontainstwonestedloopswheretheouteroneisthecolumngenerationloopandtheinneroneisthegradientsearchloop.Moreover,weextendourapproachfromthesingle-periodcasetothemulti-periodrollinghorizoncase.
Therestofthepaperisorganisedasfollows.InSection2weformulatethebuild–packplanningproblemasanestednonlinearprogrammingproblem.InSection3wefirstdevelopagradientsearchsolutionforafixedsizedproblem,andthenshowhowthecolumngenerationtechniquecanbeappliedtoit.Nextwesummarisethealgorithmsandpresentsomenumericalresults.InSection4wedemonstratetheextensionofourapproachtothemulti-periodrollinghorizoncase.Section5concludes.2.Problemformulation
2.1Notation
Wedefinethefollowingparametersforthesingle-periodbuild–packplanningproblem.
KÂPkpVpVkpvpmvpsetofallorder-typessetofallbuild-typessetofallcomponentsindexoforder-typeindexofbuild-type
indexofproductcomponent
setofallvendorsofcomponentp
setofallvendorsofpthatisacceptableintheAVMoforder-typekindexofcomponentvendorforcomponentpsupplyfromcomponentvendorvp5786G.Sunetal.
dkugkhdemandfororder-typekbuildlevelforbuild-type
costofperunitofdemandunfulfilledfororder-typekcostofperunitofproductsoverproducedforbuild-type
2.2Masterproblemformulation
Nowweformulatethemasterproblemwhosedecisionvariablesarethetargetproductionlevelsofthebuild-types,u,2Â.ProblemMP:
Downloaded by [Loughborough University] at 15:47 05 January 2015 minimiseFðuÞ,
subjectto
GvpðuÞ¼mvpÀ
ÂX¼1
ð1Þ
pu!0,82Â,
v
8vp2Vp,8p2P,ð2Þð3Þ
GðuÞ¼u!0,
where
v
p¼
8
><1,>:0,
ifbuild-typeisbuiltusingvendorvpforcomponentp,
vp2Vp,p2P,otherwise.
ThecostfunctionF(u)representstheexpectedcostassociatedwiththeprocessofpackingbuild-typesasorder-types.Equations(2)arecomponentavailabilityconstraintsand(3)excludesthepossibilityofnegativebuild-typelevels.Fornotationalconvenience,wecombineGvp(u)andG(u)togetherandre-indexasGl(u),l¼1,...,L,whereListhetotalnumberofconstraints.Observefrom(2)and(3)thatallconstraintsarenotonlyconvexbutalsolinear,sothefeasibleregionisinfactapolyhedra.
NextwediscusshowtoevaluatetheexpectedcostF(u)whenthebuildplanuisgiven.ThedifficultyisthatthereisnoclosedformforF(u).HenceweproposetogeneraterandomsamplesofcustomerdemandsbasedonthegivendemanddistributiontoestimateF(u).Oncethecustomerdemandd(!)isrealised,howtosatisfythecustomerdemandscanbemodeledasatransportationproblemwhichwillbediscussedlaterinSection2.3.Denotef(u,d(!))theoptimalcostofthetransportationproblem,soF(u)istheexpectationoff(u,d(!))overallpossible!,thatis
FðuÞ¼E!½fðu,dð!ÞÞ:
ð4Þ
SupposewehaverunatotalofNdemandrealisations,!1,!2,...,!N,thenanestimateofF(u)isgivenby
N1X
FNðuÞ¼fðu,dð!nÞÞ:
Nn¼1
ð5Þ
InternationalJournalofProductionResearch5787
Ifthedemandrealisationsareindependentofeachotherandyieldani.i.d.sequence{f(u,d(!1)),...,f(u,d(!N))},then,bythestronglawoflargenumbers,wehave
\"#
NX1
FðuÞ¼limfðu,dð!nÞÞ¼limFNðuÞ:ð6Þ
N!1NN!1
n¼1AlthoughEquation(6)statesthat,whenNgoestoinfinity,thesampleaveragewillbethetrueexpectedvalue,inpracticewewillchooseafiniteNsuchthattheconfidenceintervaloftheestimateissmall.
2.3Transportationproblemformulation
Downloaded by [Loughborough University] at 15:47 05 January 2015 AsmentionedinSection2.2,oncetheproductionplanuandcustomerdemandd(!)areknown,theprocessofassigningbuild-typestocustomerorderscanbemodeledasatransportationproblemwhichisadeterministicproblemdefinedastransportinggoodsfromsupplyingnodes(build-types)todestinationnodes(order-types)atminimalcost(penaltycostofunfulfilleddemandplusholdingcostofoverproducedbuild-types).Thelinksconnectingbuild-typenodesandorder-typenodesareassociatedwithaunitcostofeither0orMaccordingtotheAVMsoftheorder-types.Whenapairofbuild-typeandorder-typeiscompliantwiththeAVM,thenthecostis0,otherwisethecostisM,whereMisaverylargepositivevalue.Denotex,ktheamountofproductandc,ktheunitcostassociatedwithshippingfrombuild-typenodetoorder-typenodek,where2Â,k2K.Ingeneralthedemandsandsuppliesareunbalanced,thereforetomaketheproblemfeasible,twodummynodes,oneforthebuild-typesideandonefortheorder-typeside,areintroducedintothetransportationnetwork.Indexthedummybuild-typebyjÂjþ1andthedummyorder-typebyjKjþ1,wherejÂjandjKjarethesizesofsetsÂandK,respectively.xjÂjþ1,k,k2K,istheunfulfilledamountofdemandk,andthelinkbetweendummybuild-typejÂjþ1andorder-typek2Kisassociatedwithaunitpenaltycostgk.Symmetrically,x,jKjþ1,2Â,istheamountofoverproducedbuild-type,andthelinkbetweenbuild-type2Âanddummyorder-typejKjþ1isassociatedwithaunitholdingcosth.Obviously,itisnecessarytodisabletheshippingbetweentwodummynodes,soweletcjÂjþ1,jKjþ1¼M.Figure1showsanexampleofatransportationnetworkwherejÂj¼4andjKj¼3.Build-typeNo.5andorder-typeNo.4aredummynodeswhichareshownasdashed-lines.Notethatdummynodeshavelinkswithallnon-dummynodesontheotherside.
Theparametrictransportationproblemcanbeformulatedasfollows.ProblemTP:
fðu,dð!ÞÞ¼minimise
þ
subjectto
jÂjþ1X¼1jÂj,jKjX¼1,k¼1
jKjXk¼1
gkxjÂjþ1,kþ
jÂjX¼1
hx,jKjþ1
ð7Þ
c,kx,kþcjÂjþ1,jKjþ1xjÂjþ1,jKjþ1,
x,k¼dk,8k2K,ð8Þ
5788
Build-type1G.Sunetal.
Order-type122343Downloaded by [Loughborough University] at 15:47 05 January 2015 5Dummy build-type4Dummy order-typeFigure1.Transportationnetwork.
jXKjþ1k¼1jKjXk¼1
x,k¼u,82Â,x,jKjþ1¼
jKjXk¼1
ð9Þ
dkÀ
jÂjX¼1
xjÂjþ1,kÀ
jÂjX¼1
u,ð10Þð11Þ
x,k!0,
8¼1,...,jÂjþ1,k¼1,...,jKjþ1,
whereu¼(u1,...,ujÂj)(thebuild-typelevelvector)andd(!)¼(d1(!),...,djKj(!))(the
realisedcustomerdemandvector)areparameters,andcostcoefficientsc,k2{0,M},2Â,k2K,aredeterminedbyAVMs.
Thefirstitemof(7)isthesumofpenaltycostsforunfulfilleddemands,theseconditemisthesumofholdingcostsforoverproducedproducts,thethirditemiswheretheAVMskickin,andthefourthitemistoprohibitthetransportationbetweentwodummynodes.Constraints(8)areforthedemandbalancerequirementandconstraints(9)areforthesupplybalancerequirement.Constraint(10)isintroducedtobalancethetotalsupplyandtotaldemand.Constraints(11)arejustforthestandardnon-negativerequirement.Observethatconstraint(10)canbederivedfromconstraints(8)and(9),soitisactuallyredundantandcanberemoved.Thistransportationproblemcanbesolvedefficiently.
3.Solution
Ourproposedsolutiontothebuildpackplanningproblemisagradient-basedinterior-pointapproachwhichisdrivenbyestimatesofthegradientofthecostfunctionwithrespecttotheparametersofinterests.Thegradientsearchisdoneinaniterativemannerwheretheiterationofthemasterproblemstartsfromaninitialfeasibleplanu0.
InternationalJournalofProductionResearch57
Foriterationn,theexpectedcostaswellasitsgradientwithrespecttouareestimatedfromthesolutionsofasetoftransportationproblems.Thegradientestimatoristhenusedtodeterminethefeasiblesearchingdirectionsnforthenextstep.Theproductionplanisupdatedasunþ1¼unþnsn,wherenisthestepsize.Werepeatthisprocedureuntilacertainstoppingcriterionismet,sowehaveasequenceofimprovingplanswithinthefeasibleregionandachievethefinalsolutionintheend.Fromtheabovedescriptionwecanseethatthisapproachisactuallyagradient-basedinterior-pointmethod.3.1Convexity
Tomakethegradientsearchalgorithmasuitablestrategy,wefirstneedtoshowthatF(u)isaconvexfunctionofu.
Downloaded by [Loughborough University] at 15:47 05 January 2015 Lemma3.1:F(u)isaconvexfunctionofu,whichmeansthat,foranydifferentu1,u2isinthefeasiblesetand,for0551,F(u1þ(1À)u2)existsandwehave
Fðu1þð1ÀÞu2Þ Fðu1Þþð1ÀÞFðu2Þ:
ð12Þ
Proof:Becauseof(6),ifwecanshowthatf(u,d(!))isaconvexfunctionofu,F(u)mustbeconvexsinceitisaconvexcombinationoff(u,d(!)).Nextweprovethatf(u,d(!))isindeedaconvexfunctionofu.ForconveniencewerewritetransportationproblemTPinanabstractformasfollows:
fðu,dð!ÞÞ¼minimisecx,
subjectto
Ax¼dð!Þ,Bx¼u,x!0:
Byconsideringitsdualproblem,wehave
fðu,dð!ÞÞ¼maxdð!Þyþuz,
subjectto
yAþzB!c:
Weomittheparameterd(!)inthisprooffornotationalsimplicity,soourgoalistoshowthat
fðu1þð1ÀÞu2Þ fðu1Þþð1ÀÞfðu2Þ:
Let
u1þð1ÀÞu2¼u3,
then
fðu1Þ¼maxdyþu1z,fðu2Þ¼maxdyþu2z,fðu3Þ¼maxdyþu3z,
ð20Þð21Þð22Þð19Þð18Þð17Þð14Þð15Þð16Þð13Þ
5790G.Sunetal.
andallaresubjecttothesameconstraints:
yAþzB!c:
Suppose(y1,z1),(y2,z2)and(y3,z3)areoptimalsolutionsof(20),(21)and(22),respectively,thenwehave
fðu1Þ¼dy1þu1z1!dy3þu1z3,fðu2Þ¼dy2þu2z2!dy3þu2z3,
thus
fðu1Þþð1ÀÞfðu2Þ!ðdy3þu1z3Þþð1ÀÞðdy3þu2z3Þ
¼dy3þu1z3þð1ÀÞu2z3:
Alternatively,wehave
fðu1þð1ÀÞu2Þ¼fðu3Þ¼dy3þu3z3¼dy3þ½u1þð1ÀÞu2z3
¼dy3þu1z3þð1ÀÞu2z3:
ð24Þð23Þ
Downloaded by [Loughborough University] at 15:47 05 January 2015 Bycombining(23)and(24)weprove(18)istrue,andthen(12)istrueandtheproofiscompleted.hThemasterproblemisactuallyaconvexprogrammingproblem,hencethegradientsearchwillgiveustheglobaloptimalsolution.
3.2Gradientestimator
InSection2.3weformulatedthepackingprocessasatransportationproblem.Whenitissolved,atoptimalpointx*(!),theshadowpriceofthebuild-type,i.e.thedualvariableassociatedwithconstraint(9),isapartialderivativeoff(u,d(!))withrespecttou.Denotetheshadowpriceofbuild-typebyÃ,thenwehave
@fðu,dð!ÞÞ
jx¼xÃð!Þ¼Ã,@u
2Â:
Wefurtherdefinethegradientoff(u,d(!))withrespecttouas@fðu,dð!ÞÞ@fðu,dð!ÞÞ
jx¼xÃð!Þ,...,jx¼xÃð!Þ:rfðu,dð!ÞÞjx¼xÃð!޼ü
@u1@ujÂj
ThenafterNi.i.d.simulationrunsweobtainasequenceofgradientsrf(u,d(!1)),
rf(u,d(!2)),...,rf(u,d(!N)),andtheestimateofgradientrF(u)isgivenasPð1=NÞNn¼1rfðu,dð!nÞÞ.3.3Searchingdirection
Inthissectionweshowhowtodecideonafeasiblesearchingdirectionsnbasedonthegradientestimatorobtained,whichcanbeusedtoupdatebuildplanuinthefollowingway:
unþ1¼unþnsn,
ð25Þ
InternationalJournalofProductionResearch5791
wherenisthestepsizechosenforiterationn.SupposethegradientrF(un)isknown,thentofindanimprovingdirection,whichisadescentdirectioninourcase,theanglebetweenrF(un)andsnshouldbegreaterthan90,thatis
rFðunÞÁsn 0:
Buttoremainfeasibleforafinitemove,snmustatleastbetangenttoallactiveconstraintsofproblemMP,thatis
rGlðunÞÁsn!0,
l2IA,
Downloaded by [Loughborough University] at 15:47 05 January 2015 whereIAdenotesthesetofactiveconstraints.Fortheinterior-pointmethod,keepingawayfromtheboundaryusuallyacceleratesthesearchandalsoreducesthezig-zageffects.Therefore,weintroduceapush-offfactorforthoseactiveconstraints,
rGlðunÞÁsnÀ!0,
l2IA,
whereisanon-negativeconstant.Inpractice,wecanaffordalargerpush-offwhenthegainintheobjectivefunctionislarge(smallabsolutevalueofrF(un)Ásnsinceitisnegative),therefore
rGlðunÞÁsnþ½rFðunÞÁsn!0:
MinimisingrF(un)Ásn 0isequivalenttomaximisinginrF(un)Ásnþ 0,withthefeasiblerequirementrGl(un)ÁsnÀ!0.Therefore,tofindtheoptimalsn,weneedtosolvethefollowingdirection-findingproblem.ProblemDF:
maximise,
subjectto
rFðunÞÁsnþ 0,rGlðunÞÁsnÀ!0,sn:bounded.
Strictlyspeaking,activeconstraintsarethosewheretheequalitysignholds.However,ignoringthosenearlyactiveconstraintsmaycauseazig-zagsearchpath.Toavoidthis,wefurtherintroduceapositivethreshold\"andtreatalltheconstraintssatisfyingGl(un) \"asactive.Intheend,weneedtochooseboundsforsn,sayÀ1 ksnk1 1.Uptonowthedirection-findingproblemhasbeenformulatedasalinearprogrammingproblemthatcanbeeasilysolved.
l2IA,
ð26Þð27Þ
3.4Columngeneration
DenotejVpjthesizeofVp,thenthetotalnumberofbuild-typesisÅp2PjVpj.RecallthatjKjisthetotalnumberoforder-types,sointhetransportationproblem,thetotalnumberofdecisionvariablesisjKjÁÅp2PjVpj.Whentheproblemsizeislarge,itrenderssolutionbygeneral-purposeLP-solversimpractical,ifnotimpossible.Insomerealisticinstances,simplygeneratingallthecoefficientsofthedecisionvariableswillusuallyprohibitthe
5792G.Sunetal.
Downloaded by [Loughborough University] at 15:47 05 January 2015 direct-solvingapproach.Inthissituation,tomakethelarge-sizeproblemmanageable,weproposethecolumngenerationtechnique.
Theoriginalcolumngenerationtechniqueisaspecialisationofthesimplexmethodforlinearprogrammingwhichproceedsbysolvingarestrictedformoftheoriginalproblem(calledthemasterproblem)byconsideringonlyasubsetofallpossiblecolumns(variables).Non-basiccolumnswhichhavethepotentialtocontributetoimprovetheobjectivefunctionaregeneratedatthepricingstagebysolvingaseparatepricingproblem.Thepotentialofanon-basiccolumnisdeterminedbysomecriterion,usuallythereducedcostofthecolumn.Thenewcolumnsfoundarethenaugmentedtothemasterproblemandthemasterproblemisre-solved.Thisprocedureiteratesbetweensolvingthemasterproblemandthepricingproblemuntilnomorecolumnswithpotentialcontributionscanbefound.
Althoughthebuild–packplanningproblemisanonlinearconvexprogrammingproblem,thecolumngenerationideacanstillbeused.DefineproblemRMPastherestrictedversionofproblemMP,whereRMPcontainsonlyasubsetofbuild-types(columns)inMP.DenotethesubsetasÈ,sowehavejÈj jÂj.Thesolutionprocedureisasfollows.FirstwesolvetherestrictedproblemRMPusingourgradientsearchalgorithmanddenotethesolutionasuopt.Next,wecheckthecolumns(build-types)thatarenotinthecurrentRMPforfurtherpossibleimprovementstothissolution.Iftherearenosuchcolumns,thecurrentsolutionisfinalandtheprocedureends.Otherwise,newcolumnsareintroducedintoRMPandthesolvingprocedurerepeats.Inlinearprogramming,findingnewcolumnscorrespondstoscanningfornon-basiccolumnswithnegativereducedcosts.However,sincetheproblemconsideredhereisnonlinear,weneedtodevelopthepricingproblemforit.
FirstweconsiderthecomponentconstraintsinRMP.Thereisatrade-offtobemetifweproduceanewbuild-typeattheexpenseofotherbuild-typescompetingforthesamecomponents.Sohereweexaminethepartofthereducedcostduetothelimitedcomponentavailability.Atuopt,thecurrentoptimalsolutionofRMP,letvp,vp2Vp,p2P,betheshadowpriceofcomponentpfromvendorvp(thedualvariableassociatedwithconstraint(2)).ThusbytheKKTconditionwehave
XX
vprGvpðuoptÞ¼0,ð28ÞrFðuoptÞÀ
p2Pvp2Vp
vpGvpðuoptÞ¼0:
ð29Þ
Thenallvp,vp2Vp,p2P,canbecalculatedfromtheaboveequationset.Observingfrom
(29),forinactiveconstraintswhereGvp(uopt)40,wehavevp¼0,andonlyforactiveconstraintswhereGvp(uopt)¼0itispossibleforvp40.Therefore,iftherearenoactiveconstraints,or,inotherwords,uoptisaninteriorpoint,weimmediatelyhavevp¼0forallvp2Vp,p2P.Inthiscase,nocomponentiscritical,sothemarginalcostforintroducinganewbuild-typeis0becauseexistingbuild-typesneednotsacrificetheirconsumptionofcomponentsforthenewbuild-types.Ontheotherhand,ifuoptisontheboundary,oneormoreconstraintsisactiveandthecorrespondingvpcanbesolvedfrom(28)andPthePmarginalvpcomponentcostforintroducinganewbuild-type2ÂÀÈisp2Pvp2VpvpÁ,whichisalwaysnon-negative.
Nextwemoveourattentiontothepartofreducedcostinthepackingprocess.Forthetransportationproblem,thesupplyingnodesarenowonlythosebuild-typesbelongingtosubsetÈ.WedenotetherestrictedtransportationproblembyRTP.
InternationalJournalofProductionResearch5793
However,forpurposesofanalysis,thisRTPcanbeseenasaspecialformofthefull-sizetransportationproblem(TP)whereuareartificiallysetto0forall2ÂÀÈ.Thenwedenotetheshadowpriceofbuild-type2ÂÀÈby,soÀreflectsthecorrespondingbuild-type’spromiseofimprovingthecurrentplan.Notethat,2ÂÀÈ,cannotbeobtainedfromsolvingproblemRTPsincethosebuild-typesarenotincludedintherestrictedproblem.
Combiningtheabovetwopartsofthereducedcost,thedecisionofwhetherabuild-typeisavalidcandidatetobeintroducedishencedeterminedbythebestoverallpromiseinplanimprovement.Therefore,thepricingproblemcanthenbestatedasfollows.ProblemRP:
XX
p2Pvp2Vp
v
Downloaded by [Loughborough University] at 15:47 05 January 2015 Zr¼minvp
vpÁpþ,
ð30Þ
subjectto
X
p¼1,
v
8p2P,8vp2Vp,8p2P,
ð31Þð32Þ
vp2Vpv
p2f0,1g,
whereZrin(30)isthereducedcostexpressionforbuild-type2ÂÀÈ.Solvingthis
v
pricingproblemyieldsafeasiblesetofparametervariablesp,8vp2Vp,8p2P,indicatingabuild-typewithminimalreducedcost.
TheproblemofsolvingproblemRPdirectlyisthatitneedstoexplicitlyenumer-ateallthecolumns(build-types).Thisiswhatwewanttoavoidbecauseofthelargenumberofcolumns.Furthermore,asmentionedbefore,in(30)areavailabletousbysolvingRTP.Therefore,weusethefollowingdecompositionmethodtosolveitindirectly.
Sinceonlywithnegativereducedcostareofinterest,basedontheobser-PPbuild-typesv
vationthatp2Pvp2VpvpÁp!0in(30),weonlyneedtoexaminethosebuild-typeswhere50.Nextweseehowtojudgethesignof.Recallthat,intheformulationofthetransportationproblem,ifabuild-typecanbeassignedtoanorder-type(whichmeansthebuild-typedoesnotviolatetheAVMofthatorder-type),thelinkbetweenthemhasacost0,otherwisethecostisalargeM.InthefollowingdiscussionweremovefromthetransportationnetworkthoselinkswhosecostisM.Theninthenewnetwork,foreachbuild-typethereisagroupoflinkedorder-types,andsymmetricallyforeachorder-typethereisagroupoflinkedbuild-types.Denotetheshadowpriceoforder-typekbyk,whichcanbeobtainedfromsolvingRTP.Forbuild-type0where050,amongitslinkedorder-typestheremustbeatleastonewithpositiveshadowprice.Supposeorder-typek0istheonewiththelargestpositiveshadowprice,thenwehave0¼Àk0.Ontheotherhand,fororder-typek0wherek040,allitslinkedbuild-typesmusthavenegativeshadowprices.Supposebuild-typek0istheonewiththesmallestnegativeshadowprice,sowehavek0 Àk0.BasedontheaboveanalysiswecanseethattheunknownisboundedbyÀkforsomek.ThisobservationgivesustheideatodecomposetheproblemRP.Westartbyscanningalltheorder-types.Thisispossiblesincethenumberoforder-typesismoderatecomparedwiththenumberofbuild-types.Ifallk 0,thisimpliesthatallbuild-typeshaveapositivereducedcost,thenthepricingprocedureterminates.Otherwise,foreachorder-typewithapositiveshadowprice,sayk,weformulate
5794G.Sunetal.
aminimisationsub-problemtodetermineamongitslinkedbuild-typestheonewiththeminimalcomponentcost:
XXv
Zs¼vpÁp,minvpð33Þk
p2Pvp2Vp
subjectto(31)and(32).
Ã
,anditscorrespondingSolvingthissub-problemyieldsabuild-type,sayk
Ãk
optimalcomponentprice,Zs.Theninthesecondstepwesolvetheminimisationproblem
Ãk
minZrÃk
¼
Ã
kZs
Àk,
ð34Þ
Downloaded by [Loughborough University] at 15:47 05 January 2015 andthesolutionisthenthesolutionofproblemRP.Inthisway,wecansolvethepricingproblembysolvingaseriesofsub-problemsofsmallsize.Notethat,intheabovediscussion,andkareactuallyintheformofaveragesofallreplicationswithdifferentdemandrealisations.
Nextwediscusshowtosolvetheminimisationproblem(33).Thisproblemistofindafeasiblebuild-typethatisincompliancewiththeAVM,tobeassignedtoachosenorder-typekatminimumcost.Thismeansadoptinganetworkrepresentationwherethevendorsarerepresentedbynetworknodes,thenodesforthesamecomponentbeinggroupedintoanetworklayer,andwithanarclinkingtwonodesindifferentlayersonlyiftheydonotviolatetheAVMrequirements.The‘length’ofanarcfeedingintoanodeassociatedwith
v
componentvendorvpisthenthecostcoefficientofpinexpression(33),vp.Anyfeasiblewalkthroughallthecomponentlayersconstitutesafeasiblebuild-type.ForacertaintypeofAVM,thecomponentlayerscanbeputintandemformasshowninFigure2,wheretherearethreelayers,A,BandC,and,withineachlayer,anoderepresentsacomponentvendor,i.e.therearethreevendorsforcomponentA,twoforB,andfourforC.
Inthisnetworkrepresentation,problem(33)isequivalenttofindingtheshortestdirectpathfromthesourcenodetothesinknodethroughthelayersofcomponentnodes.However,thisnetworkrepresentationhassomerestrictions.Itonlyappliestothecasewherethecomponentlayerscanbeputintandemform.Butthisrestrictiondoesnotplaceasignificantlimitationonreal-worldapplicationssince,inmostpracticalcases,thecustomerrequirementsarebetweentwocomponentsonly,whichiscoveredbyournetworkrepresentation.
Component AComponent BComponent CSource nodeSink nodeFigure2.Shortestpathnetwork.
InternationalJournalofProductionResearch5795
Inthefollowingwedefinethecomponentsoftheshortestpathnetwork.LetthenetworkofconcernbeG(N,A),whereNisthesetofnodesandAisthesetofarcsinthenetworkconnectingthecomponentnodesinthespecial‘layered’structure,A&NÂN.Letyi,jdenotetheflowleavingnodeiandenteringnodej,wherearc(i,j)2A.Definethesourcenodeaandthesinknodeb.Furthermore,foreachvendorvp2Vkpofeachcomponentp2P,definethecomponentnodenvp.ThestructureofGissuchthatthenodesnvp,8vp2Vkp,foreachcomponentpformalayerofnodes,andthelayersarearrangedintandeminthenetwork.Inordertoobtainacompletebuild-type,theremustbeflowfromatobthroughoneandonlyonenodeperlayerthroughtheseriesoflayersofcomponentnodes.Anarcðnvp,nvp0Þexistsonlyifthepairofcomponentspandp0constituteadjacentlayersinthenetwork,andsuchthatvpandvp0donotviolateAVMrestrictionsfororder-typek.Theshortestpathproblemassociatedwithorder-typekisstatedasfollows.
Downloaded by [Loughborough University] at 15:47 05 January 2015 ProblemLPk:
minimise
subjectto
XX
p2P
vp2Vkp
24vpÁ
X
i:ði,nvpÞ2A
3yi,nvp5,
ð35Þ
X
j:ða,jÞ2A
ya,j¼1,yi,b¼1,ynvp,j¼
X
i:ði,nvpÞ2A
ð36Þð37Þ
yi,nvp,
8vp2Vkp,8p2P,
ð38Þð39Þ
X
X
i:ði,bÞ2A
j:ðnvp,jÞ2A
yi,j2f0,1g,
8ði,jÞ2A:
Equations(36–38)arenetworkflowbalanceequationsforthesourcenodea,sinknodeb
andeachofthecomponentnodes,respectively.Equation(39)imposesyi,jtobediscrete,butduetothenetworkstructureoftheproblem,totalunimodularityguaranteesyi,jtobeanintegerintheoptimalsolution.Thisnetworkproblemiseasilysolved.
Insummary,ourproceduretosolveRPstartsfromscanningtheorder-types.Anorder-typeisofinterestonlyifitsshadowpriceinRTPispositive.Foreachofthoseorder-typeswesearchforacorrespondingbuild-typethatminimisesthevalueofZsin(33).Fororder-typek,thisisaccomplishedbysolvingtheshortestpathproblemLPk.Theresultingbuild-typeisavalidcandidateforthefinalsolutionifZsÀk50.Thebuild-typewiththegreatestoverallpromise(smallestreducedcost)isthenintroducedintothesetofÈ.Ifwesettheinitiallevelofthenewbuild-typeto0,theprevioussolutionuoptisstillfeasibleinthenewproblem,butnotoptimal.Startingfromthispointthenewproblemisresolved.Thealgorithmstopswhenthereisnobuild-typeinÂÀÈhavinganegativereducedcost.Thenthesolutionisthefinalsolution.
3.5Thealgorithm
Inthissectionwesummarisethealgorithmdevelopedabove.ProcedureMPperformsthegradientsearchtofindtheoptimalsolutionforagivenrestrictedproblemRMP.
5796G.Sunetal.
ProcedureMP:(1)(2)(3)(4)(5)(6)(7)
Initialisethebuild-typelevelu,step-size.Generateademandrealisationd(!).
FormulatethetransportationproblemTPandsolveit,obtainf(u)andrf(u).Ifnomoredemandsampleisneeded,proceedtoStep(5).Otherwise,gobacktoStep(2).
AverageoverthetotalnumberofdemandrealisationstoobtainthecostandgradientestimatorFðuÞandrFðuÞ.
Ifthestoppingcriterionismet,theprocedureMPterminatesanduandFðuÞarereturned.Otherwise,proceedtoStep(7).
FormulatethedirectionfindingproblemDFandsolveit,obtainthesearchdirections.
Updatebuild-typelevelbyuþÁs,thengobacktoStep(2).
Downloaded by [Loughborough University] at 15:47 05 January 2015 (8)
WhenimplementingprocedureMP,thereisatrade-offbetweenthestoppingcriteriaandthecomputationaleffort.Itisnotnecessarytohaveatoostrictstoppingcriteriabecausethemasterproblemwillbere-solvedwhennewcolumnsaregenerated.Thestepsizeisarbitrarilychosenforeachiterationandifitmakesthenextpointgobeyondthefeasibleregion,ithastobereduced.
Attheoptimalsolution,procedurePricebelowisusedtofindthenewcolumn(build-type)tobeintroducedintosetÈ.ProcedurePrice
(1)InitialisethecurrentbestsolutionvalueZÃr¼0.
(2)Selectanorder-typek2Kasacandidate.IfitsshadowpriceinRTPk 0,then
eliminatethecandidateofkandproceedtoStep(3).Otherwise,gotoStep(5).(3)IftherearestillunselectedkfromK,gotoStep(2).Otherwise,proceedtoStep(4).(4)IfZÃr¼0,thennoenteringnon-basicbuild-types2ÂÀÈcanbelocated.
Otherwise,thecurrentsolutiontoRPisusedtoformthenewcolumntoenterthesetÈ.ProcedurePriceterminates.
(5)SolvethefollowingshortestpathproblemLPkassociatedwiththecandidatekand
obtaintheminimumcostZs.
Ã
(6)ComputeZr(k)¼ZsÀk.IfZrðkÞ5ZÃr,thenupdateZr¼ZrðkÞ.GotoStep(3).OncethesetÈisupdated,themasterproblemMPisthenre-solvedandthestepsofsolvingRParerepeated.Therefore,thecolumngenerationiterationismostlyouteriteration.Theprocedureofcolumngenerationcanbesummarisedasfollows.ProcedureCG:
(1)Initialisetherestrictedcolumn(build-type)setÈ.
(2)SolvetherestrictedmasterproblemRMPtooptimalityusingprocedureMP.(3)UsetheKKTconditionofRMPtocalculatetheshadowpricevpofcomponentp
fromvendorvp,thendefinethecorrespondingpricingproblemRPandsolveitusingprocedurePrice.
(4)IfthesolutiontoRPgivesnonon-basicvariableswithnegativereducedcost,then
thecurrentsolutionofRMPisoptimalinMP,andtheprocedureends.Otherwise,proceedtoStep(5).
(5)UpdatethecolumnsetÈwiththenewlygeneratedcolumn.GobacktoStep(2).
InternationalJournalofProductionResearch5797
3.6Numericalresults
Inthissectionwetestourgradient-basedoptimisationalgorithmbysimulation.Notethatthegoalofthesecomputationalexperimentsistoverifythecorrectnessofouralgorithminsteadofsolvingareal-worldproblem.
3.6.1Experiment1:threecomponents,10suppliersforeachcomponentand10customer
ordertypeswithrestrictiveAVMconstraintsWeassumethattheproductconsistsofthreecomponents,denotedA,BandC.Foreachofthesecomponents,thereare10vendorsavailable,indexedfrom0to9.Wetestedthreescenarioswithdifferentcomponentavailabilityandpenaltycostsforshortages.ThecomponentavailabilityisgiveninTable1.
Weuseathree-digitnumberfrom000to999todenoteaspecificbuild-type,forexamplebuild-type‘308’hascomponentAsuppliedbyvendorA3,componentBsuppliedbyvendorB0,andcomponentCsuppliedbyvendorC8.Thereare20customerswithdifferentAVMs,i.e.thereare20differentorder-types,indexed0,...,19.Thecorrespon-dencebetweenbuild-typesandorder-typesisrandomlysetandisshowninTable2.Forexample,customerorder-type6allowsthecomponentvendorcombinationA6,B5andC3,andcomponentvendorcombinationA1,B7andC0.
Table1.Componentavailability.ComponentAScenario1Scenario2Scenario3ComponentBScenario1Scenario2Scenario3ComponentCScenario1Scenario2Scenario3
A0850850850B0500500500C0120012001200
A1450450450B1800800800C1300300300
A2100010001000B2800800800C2700700700
A3600600600B3140014001400C3450450450
A4450450450B4500500500C4145014501450
A5300300300B5900900900C55005000
A6350350350B6300300300C6350350350
A7700700700B7650650650C7500500500
A8700700700B8600600600C8100010001000
A9130013001300B9400400400C9700700700
Downloaded by [Loughborough University] at 15:47 05 January 2015 Table2.Correspondencebetweenbuild-typeandorder-type.Order-typeBuild-typeOrder-typeBuild-typeOrder-typeBuild-typeOrder-typeBuild-type
0
985/740/26750741052515
334/310
18006
653/17011
334/72916
008/578
2239798012
823/17917746
30841393218
920/720/582
4
7/371/61699171429819138
5798
Table3.Demandprofile.Order-type2Order-type20446771027834
1371501130141
2322311227828
G.Sunetal.
3468661349921
4306921436827
52156616996
6214481620339
7470461733484
8452351821966
9253481945245
Table4.Unitpenaltycostforshortage.Order-typeScenario1Scenario2Scenario3Order-typeScenario1Scenario2Scenario3
07191910777
111111111112020
2197712888
312121213121212
4610101481919
512121215121212
61088161066
720202017191010
888818888
966619201111
Downloaded by [Loughborough University] at 15:47 05 January 2015 Therandomdemandofeachorder-typeisassumedtobenormallydistributedwithgivenmeanandvariance2,withtheassumptionofnon-negativity.and2aregeneratedusingauniformrandomnumbergeneratorandthevaluesusedinourexperimentareshowninTable3.
Assumeallbuild-typeshavethesameunitholdingcostof1,whilethepenaltycostforunmetdemandforeachcustomerisarbitrarilysetasinTable4.
Tosummarise,scenarios1and2aredifferentwithrespecttotheunitshortagepenalty;scenario3isanextremecasecomparabletoscenario2,asscenario3hasonesupplierunabletosupplyoneofthecomponents,i.e.thecomponentavailabilityforcomponentC5inscenario3is0.
ForeachiterationoftheprocedureMPweran20customerdemandrealisationsandtheaverageof20simulationreplicationsisusedtoestimatethecostandgradientestimators.Wefoundthat20isareasonablenumberinourexperimentstobalancethetrade-offbetweencomputationalburdenandaccuracyofestimation(thestandarddeviationislessthan20%oftheresults).Thestep-sizeforthegradient-searchisre-setto10atthebeginningofeachiterationandismultipliedby0.618eachtimeifthecurrentstep-sizeistoolargetokeepthenextpointinsidethefeasibleregion.AllthesimulationsweretestedonanIntel(R)Core(TM)2Duo2.66GHzPCwith4GBRAMandWindowsVistaEnterpriseEdition.TheprogramsarecodedinCþþandILOGCPLEX11.0LPandnetworksolverlibrariesareusedtosolvethesub-problems.
Figure3demonstratesthesimulationresultsandshowsthatthetrendofthecostcurvesinthethreescenariosisquitesimilar,andallofthemtookabout20minutestoobtainananswer.
Forcomparisonpurposes,were-solvedtheabovethreescenariosusingthealgorithmwithoutthecolumngenerationscheme.Itwasassumedtohavereachedtheglobaloptimalsolution.PairedcomparisonsbetweensimulationswithandwithoutcolumngenerationareshowninFigure4.
Downloaded by [Loughborough University] at 15:47 05 January 2015 Figure3.Experiment1.
InternationalJournalofProductionResearch
5799
5800G.Sunetal.
Downloaded by [Loughborough University] at 15:47 05 January 2015 Figure4.Comparisonofusingandnotusingcolumngeneration.
InternationalJournalofProductionResearch5801
Wecanseefromthefiguresthatthecolumngenerationalgorithmsuccessfullyreducesthecosttothesamelevelasthatfoundbytheglobalsearchinallthreescenarios.Ifcolumngenerationisnotused,thecomputationaltimeincreasessubstantially,fromabout20minutestoabout10hours.Therefore,thesetestsdemonstratethatthecolumngenerationmethodgreatlyreducesthecomputationalburdenwithoutcompromisingthequalityoftheresults.
3.6.2Experiment2:threecomponents,10suppliersforeachcomponentand10customer
order-typeswithmorerelaxedAVMconstraints
Tobettertestthecapabilitiesofouralgorithm,wefurtherformulatedthreemuchlargerproblems.ThesettingsaresimilartoExperiment1,exceptthatthenumberofcombi-nationsofvendorsthateachcustomercanacceptislarger(rangingfrom10to30).Forthiscase,asthenumberofcolumnsisverylarge,itisimpossibletoloadallthepossiblecolumnsintotheCPLEXsolver.Hence,weranonlythecolumngenerationalgorithmforthosethreescenariosandtheresultsareshowninFigure5.Itcanbeseenthatouralgorithmstillperformedquitewellforlarge-sizedproblems.Theobjectivevaluedecreasesquicklyandconvergestoaminimumlevel.
3.6.3Experiment3:threecomponents,10suppliersforcomponentA,15suppliersfor
componentB,12suppliersforcomponentCand80customerorder-typeswithlargeAVMsTounderstandhowouralgorithmperformsunderalarge-scaleproblem,wedesignedatestscenariowithalargeproblemsize.Inthisscenario,thereare10suppliersforcomponentA,15suppliersforcomponentB,and12suppliersforcomponentC.Thematerialavailabilityforeachsupplierisrandomlygeneratedintherange1000to3500.Thenumberofcustomersincreasesfrom20to80.Furthermore,theunitshortagecostisalsogeneratedrandomlyintherange1–20.
Thecomputationaltimeneededtoperformthetest,asshowninFigure6,wasroughly20hours.Weseeaverysimilartrendforthecostcurveasinpreviouscases,whichconvergestoanear-optimalsolution.
Theproblemsizeconsideredhereisreasonablylargeforareal-worldsetting.Althoughthecomputationaltimeislong,wefeelthatitisstillreasonable,asproductionplanningisusuallydoneonaweeklybasis.Moreover,wefeelthatthiscomputationaltimecanbeshortenedifwecodeourprogrammoreefficiently.Currently,themajorcomputationaltimecomesfromloadingthemodelsintothesolver.
Downloaded by [Loughborough University] at 15:47 05 January 2015 4.Extensiontothemulti-periodandrollinghorizoncase
Inprevioussectionswehavedevelopedasolutionforthebuild–packplanningproblemforthecaseofasingleperiod.Inthissection,wetrytoextendourapproachtothemulti-periodcase.SupposewehaveaplanninghorizonofTperiodsandindexthembyt2{1,...,T}.Whenperformingplanningatthebeginningofthehorizon,thecustomerdemandsfortheentirehorizonareunknowntotheplanner,butweassumethecustomerprofilesforeachperiodareknown.Thedemandunfulfilledwithinitsownperiodisbackloggedandmaybefulfilledinfutureperiod(s)withatardinesspenalty,suchasgkfordemandkforeachperiodofdelay.Anydemandthatisunfulfilledattheendofthe
5802G.Sunetal.
Downloaded by [Loughborough University] at 15:47 05 January 2015 Figure5.Experiment2,withrelaxedAVM.
horizonischargedwithaone-timeshortagepenalty,suchasGkfordemandk.Symmetrically,abuild-typethatisnotusedupinitsownproductionperiodwillexperienceaholdingcost,suchashforbuild-typeforeachperiodofholding.Theleftoverofthebuild-typeattheendofthehorizonischargedwithaone-timesalvagecost,suchasHforbuild-type.Theschedulesofcomponentsupplyfromthevendorsfor
InternationalJournalofProductionResearch5803
Downloaded by [Loughborough University] at 15:47 05 January 2015 Figure6.Experiment3.
thewholehorizonarefixedinadvanceandknowntotheplanner.Theunusedcomponentsinoneperiodarerolledovertothenextperiod.NotethattheprofileandAVMofacertaincustomeraswellastheavailabilityofacertaincomponentarenotnecessarythesamefromperiodtoperiod.
Themulti-periodbuild–packplanningproblemisdescribedasdeterminingwhichbuild-typetobuildandhowmuchtobuildineachproductionperiodandhowtopackthemfordifferentcustomerordersindifferentperiods.Superscripttisintroducedtodenotedifferentperiods,andtheproblemformulationiswrittenasfollows.ProblemMP:
minimiseFðu1,...,uTÞ,
subjectto
GvpðuÞ¼
ut
t
tXt0¼1
0
mtvp
ð40Þ
À
tXÂXt0¼1
¼1
put!0,
v
8vp2Vp,8p2P,t¼1,...,T,ð41Þð42Þ
!0,82Â,t¼1,...,T:
Fortheformulationofthetransportationproblem,thesupplyingnodesarea
collectionofbuild-typesinallperiods,u1,...,uT,andthedestinationnodesareacollectionoforder-typesinallperiods,d1(!),...,dT(!).Therealisationsofcustomerdemandaregeneratedfromthecustomerprofileineachperiod.Similartothesingle-periodcase,thelinkbetweenasupplyingnodeandadestinationnodewhichisprohibitedbythecorrespondingAVMtakesaunitcostM.ForotherlinkswhichareallowedbytheAVMs,however,weassociateeachlinkwithacostinthefollowingway.Consideranallowedlinkbetweenbuild-typeinperiodt(denoted(,t))andorder-typekinperiodt0(denoted(k,t0)),where2Â,k2K,t,t02{1,...,T}.Ift¼t0,thecostassociatedwiththislinkissetto0.Otherwise,ift5t0,thecostissetto(t0Àt)h,andift4t0thecostissetto(tÀt0)gk.Therearealsotwodummynodes,oneforeachside.Denotethedummybuild-typeby(jÂjþ1,Tþ1)andthedummyorder-typeby(jKjþ1,Tþ1),thenthecostassociatedwith
5804G.Sunetal.
thelinkbetween(jÂjþ1,Tþ1)and(k,t0)issettoGkandthecostassociatedwiththelinkbetween(,t)and(jKjþ1,Tþ1)issettoH.Asforthesingle-periodcase,thelinkbetweentwodummynodesissetacostM.Denotexð,tÞ,ðk,t0Þtheamountshippedfrombuild-typenode(,t)toorder-typenode(k,t0),where2Â,k2K,t,t0¼1,...,Tandc(,t),(k,t0)istheunitshippingcost.Thetransportationproblemthenbecomesasfollows.ProblemTP:
fðu,...,u,dð!Þ,...,dð!ÞÞ¼minimise
þ
jÂjTXXt¼1¼1
1
T
1
T
jKjTXXt0¼1k¼1
GkxðjÂjþ1,Tþ1Þ,ðk,t0Þ
Hxð,tÞ,ðjKjþ1,Tþ1Þ
cð,tÞ,ðk,t0Þxð,tÞ,ðk,t0Þ
ð43Þ
Downloaded by [Loughborough University] at 15:47 05 January 2015 þ
jÂj,jKjTXXt,t0¼1¼1,k¼1
þcðjÂjþ1,Tþ1Þ,ðjKjþ1,Tþ1ÞxðjÂjþ1,Tþ1Þ,ðjKjþ1,Tþ1Þ,
subjectto
jÂjTXXt¼1¼1jKjTXXt0¼1
k¼1
xð,tÞ,ðk,t0ÞþxðjÂjþ1,Tþ1Þ,ðk,t0Þ¼dtk,xð,tÞ,ðk,t0Þþxð,tÞ,ðjKjþ1,Tþ1Þ¼ut,xðjÂjþ1,Tþ1Þ,ðk,t0ÞÀ
jÂjTXXt¼1¼1
0
8t0¼1,...,T,8k2K,8t¼1,...,T,82Â,
jKjTXXt0¼1k¼1
t0
dk
ð44Þð45Þ
ut,
ð46Þð47Þ
jKjTXXt0¼1k¼1
xð,tÞ,ðjKjþ1,Tþ1Þ¼À
jÂjTXXt¼1¼1
xð,tÞ,ðk,t0Þ!0,
8t,t0¼1,...,T,8¼1,...,jÂjþ1,8k¼1,...,jKjþ1:
Thismulti-periodproblemformulationcanbeseenasanexpandedsingle-period
problem.Therefore,ourgradientsearchapproachforsolvingthesingle-periodproblemandthecolumngenerationschemecanbeappliedtothemulti-periodcasewithafewminormodifications.
Onefactweobservedisthattwotermsin(41)arenowtheaccumulationsoverperiodsfrom1tot.Thisonlyaffectsthemeaningofthedualvariablesassociatedwiththem.WedenotethedualvariableassociatedwithGvp(ut)in(41)byvp,t,sotheKKTconditions(28)and(29)stillholdifwereplacevpbyvp,t.Asforthesingle-periodcase,vp,t,8vp2Vp,8p2P,t¼1,...,T,canbesolvedfromtheaboveKKTequations.Ifwefurtherdenotetheshadowpriceofcomponentpfromvendorvpinperiodtbyvp,t,itcanbeexpressedasfollows:
vp,t¼
TXt0¼t
vp,t0,
ð48Þ
wherevp2Vp,p2P,t¼1,...,T.Therefore,ifvp,tisknown,vp,tcanbecomputed
from(48).
Denotethesubsetofchosenbuild-typesinperiodtbyÈPt,thenPthemarginalvp
componentcostforintroducinganewbuild-type2ÂÀÈtisp2Pvp2Vpvp,tÁ.
InternationalJournalofProductionResearch5805
IntherestrictedtransportationproblemRTP,ifwedenotetheshadowpriceofbuild-type2ÂÀÈtby(,t),thenthepricingproblemcanbestatedasfollows.ProblemRP:
minZr¼vp
t,
XX
p2Pvp2Vp
vp,tÁpþð,tÞ,
v
ð49Þ
subjectto
X
vp2Vp
p¼1,
v
v
8p2P,ð50Þð51Þ
ð52Þ
Downloaded by [Loughborough University] at 15:47 05 January 2015 p2f0,1g,8vp2Vp,8p2P,t2f1,...,Tg,
whereZrin(49)isthereducedcostexpressionforbuild-type2ÂÀÈt.Solvingthis
v
pricingproblemyieldsaperiodtandafeasiblesetofparametervariablesp,8vp2Vp,8p2P,indicatingabuild-typeinacertainperiodtobeselected.
Since(,t)arenotavailable,theprocedureforsolvingproblemRPfollowsthesameideaasforthesingle-periodcase,butnotethat(,t)nowhastheholding/tardinesscostinvolved.Theshadowpriceoftheorder-typenodecanbeobtainedbysolvingRTP,sowestartbyscanningtheorder-typenodeslookingforthosewithapositiveshadowprice.Wethenfocusononeofthoseorder-typenodes,say(k,t0),soshadowprice(k,t0)indicatesanimprovementofthecurrentplanifincreasingthesupplyofthisnode.Differentfromthesingle-periodcase,thecostofintroducingoneofitslinkedbuild-typenodes,say(,t),containsnotonlythecomponentcost,butalsotheholding/tardinesscostift¼t0.Thusweformulateaminimisationsub-problemtodeterminefromamongitslinkedbuild-typestheonewiththeminimalcost:
XXv
Zs¼vp,tÁpþ1½t5t0Áðt0ÀtÞhþ1½t4t0ÁðtÀt0Þgk,minvpð53Þt,k
p2Pvp2Vp
subjectto(50–52),where1[Á]isthestandardindicatorfunction.Solvingthissub-problemt
ðk,t0Þt
yieldsabuild-typenode,ðk,t0Þ,anditscorrespondingoptimalcost,Zs.Thenbysolvingtheminimisationproblem
tðk,t0ÞZminrt
ðk,t0Þ
¼
tð0Zsk,tÞ
Àðk,t0Þ,
ðÞ
weobtainthesolutionofproblemRP.
Nextwediscusshowtosolvetheminimisationproblem(53).Wecanmakeuseofthenetworkrepresentationforthesingle-periodcase,butsincethecomponentcostvariesindifferentperiods,weneedtobuildanetworkforeachperiodandsolveitscorrespondingshortpathproblem.Forthenetworkofperiodt,thesolutionoftheshortpathproblemgivesabuild-typewithlowestcomponentcostinthisperiod.Thislowestcomponentcostplusthecorrespondingholding/tardinesscostisthenthecostZsforperiodt.ComparingZsforallperiods,theonewiththeminimalcostindicatesthesolutionof(53).
Otherthantheaboveissues,themulti-periodproblemisthesameasthesingle-periodproblem,soweomitthedetailshere.
5806G.Sunetal.
Downloaded by [Loughborough University] at 15:47 05 January 2015 Inpractice,multi-periodproductionplanningisusuallycarriedoutinarollinghorizonfashion,thatis,whenaplanisissuedonlythefirstfewperiodsoftheplanareexecuted,thentheplanninghorizonrollsandtheproductionplanningisredoneforthenewhorizon.Forinstance,afirmmightplanforthenext24weeks,butthenrevisetheplanonceamonth.Rollinghorizonplanningisexpectedtoyieldabetterperformancebecauseitincorporatesnewinformationfromtherealiseddemandsandupdatestheplanaccord-ingly.Inarollinghorizonscenario,whenperformingtheplanningtherearecertaininitialconditions,suchascomponentshavingleftoversfrompastperiods,previousordersmaybebackloggedandneedtobefulfilled,andoverproducedbuild-typesmaybeassignedtofuturedemandinthenewhorizon.Henceinthemasterproblem(40),wehaveanextratermofthecomponentleftovertobeaddedtotheavailablecomponentin(41).Inthetransportationproblem,wehaveadditionalconstantvectorsu0andd0toindicatetheinitialvaluesofthebuild-typesanddemandsandthecorrespondingnodesareaddedtothetransportationnetwork.Everythingelseisthesameasforthemulti-periodcase,sosolvingthisproblemisquitestraightforwardandwedonotgointodetailhere.
5.Conclusion
Inthisstudywehavesolvedaproductionplanningproblemthataccountsforapprovedvendormatrixrequirementsandtheuncertaintyofcustomerdemand.Wehavetermedourproblemthebuild–packplanningproblemsincetherearetwotypesofplanningdecisions,i.e.whattobuild,andwhotopackfor.Theformerdecisionwasmodeledasanonlinearprogrammingproblemwhosedecisionvariablesaretargetbuild-typelevels,whilethelatterdecisionwasmodeledasastochastictransportationproblem.Theobjectivefunctionofthefirstproblemisthesolutionofthetransportationproblemwiththetargetbuild-typelevelsasparameters.Bygeneratingabunchofsimulatedcustomerdemands,theaveragedshadowpriceofthebuild-typelevelgivesanestimateofitsgradient.Thenweusedagradient-basedinterior-pointmethodtosearchfortheoptimalsolution.Tohandlelargeproblemsizes,weintegratedthecolumngenerationschemeintoourapproach.Numericalresultsshowthatourproposedalgorithmperformssignificantlybetterthanthenon-columngenerationmethodintermsofcomputationtimewithoutsacrificingthequalityofthesolutions.Furthermore,weextendedoursingle-periodapproachtothemulti-periodrollinghorizoncase.
Thereisatrade-offbetweensimulationefficiencyandaccuracyofestimationwhendealingwithrandomdemands.Themoresamplesused,themoreaccuratethegradientsobtainedandthebetterthechanceofselectingagoodnewcolumn,but,concurrently,thecomputationtimeincreasesaccordingly.Ifthereareinsufficientsamples,thereisariskthatthegradientestimatesmightnotbeaccurateenoughfortheoptimalsearchandthecolumngeneratedmightnotbeagoodone.Inourexperimentswechosetorun20samplesforeachstep,butthereisnoguaranteethatthisisauniversalgoodchoice.Thus,oneareaoffuturestudycouldbetodevelopasystematicwayofdeterminingtheoptimalnumberofsimulationreplications.Moreover,thereisatrade-offbetweenhowmuchtimeweneedtospendinfindingagoodcolumnandhowmanycolumnswecangenerate.Ifwehavenotgeneratedenoughcolumns,wemaynothaveexploredthewholedesignspacesufficientlyandhencetheapproachwouldnotgiveusagoodsolution.Thiscouldbeanotherfutureresearchtopic.
InternationalJournalofProductionResearch5807
Acknowledgement
ThisworkissponsoredbyNUSRPR-266-000-026-490.
References
Chu,S.C.K.,1995.Amathematicalprogrammingapproachtowardsoptimizedmasterproduction
scheduling.ProductionEconomics,38(2/3),269–279.
Dantzig,D.,1963.Linearprogrammingandextensions.Princeton:PrincetonUniversityPress.
Gilmore,P.C.andGomory,R.E.,1961.Alinearprogrammingapproachtothecuttingstock
problem.OperationsResearch,9(6),849–859.
Graves,S.C.,1982.Usinglagrangeantechniquestosolvehierarchicalproductionplanning
problems.ManagementScience,28(3),260–275.
Hax,A.C.andMeal,H.C.,1975.Hierarchicalintegrationofproductionplanningandscheduling,
Studiesinmanagementsciences.Vol.1,Logistics,Amsterdam:Elsevier,6–25.
Hodges,S.D.andMoore,P.G.,1970.Theproduct-mixproblemunderstochasticseasonaldemand.
ManagementScience,17(2),107–114.
Kao,E.P.C.andQueyranne,M.,1986.Aggregationinatwo-stagestochasticprogramfor
manpowerplanningintheservicesector.In:A.J.SwerseyandE.J.Ignall,eds.Deliveryofurbanservices(TIMSstudiesinthemanagementsciences.Vol.22,Amsterdam:North-Holland.
Kira,D.,Kusy,M.,andRakita,I.,1997.Astochasticlinearprogrammingapproachtohierarchical
productionplanning.TheJournaloftheOperationalResearchSociety,48(2),207–211.
Lee,L.H.,Chew,E.P.,andNg,T.S.,2005a.Productionplanningwithapprovedvendormatricesfor
ahard-diskdrivemanufacturer.EuropeanJournalofOperationalResearch,162(2),310–324.Lee,L.H.,Chew,E.P.,andNg,T.S.,2005b.Amulti-stagebendersdecompositionmethodfora
hard-diskdriveproductionplanningproblem.JournalofManufacturingSystems,24(4),315–327.
Metters,R.,1997.Productionplanningwithstochasticseasonaldemandandcapacitated
production.IIETransactions,29(11),1017–1029.
Nemhauser,G.L.andWidhelm,W.B.,1971.Amodifiedlinearprogramforcolumnarmethodsin
mathematicalprogramming.OperationsResearch,19(4),1051–1060.
Ng,T.S.,Lee,L.H.,andChew,E.P.,2006.Build–packplanningforharddiskdriveassemblywith
approvedvendormatricesandstochasticdemands.EuropeanJournalofOperationalResearch,175(2),1117–1140.
Peters,R.J.,Boskma,K.,andKuper,H.A.E.,1977.Stochasticprogramminginproduction
planning:Acasewithnon-simplerecourse.StatisticaNeerlandica,31(1),113–126.
Rockafella,R.T.andWets,R.J.B.,1985.ALagrangeanfinitegenerationtechniqueforsolving
linear-quadraticproblemsinstochasticprogramming.In:A.PrekopaandR.J.B.Wets,eds.Stochasticprogramming(Mathematicalprogrammingstudy).Amsterdam:North-Holland.Swaminathan,J.M.andTayur,S.R.,1998.Managingbroaderproductlinesthroughdelayed
differentiationusingvanillaboxes.ManagementScience,44(12),161–172.
VanSlyke,R.M.andWets,J.B.,1969.L-shapedlinearprogramswithapplicationstooptimal
controlandstochasticprogramming.SIAMJournalonAppliedMathematics,17(4),638–663.Wang,D.W.,1995.Earliness–tardinessproduction-planningapproachesformanufacturingsystems.
ComputersandIndustrialEngineering,28(3),425–436.
Wets,R.J.B.,1974.Stochasticprogramswithfixedrecourse:Theequivalentdeterministicprogram.
SIAMReview,16(3),309–339.
Downloaded by [Loughborough University] at 15:47 05 January 2015
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务