您好,欢迎来到星星旅游。
搜索
您的当前位置:首页合成氨碳酸氢铵工艺

合成氨碳酸氢铵工艺

来源:星星旅游


一.合成氨的工艺过程

1.概述

(1)合成氨工业的重要性

合成氨工业是基础化学工业的重要组成部分,有十分广泛的用途。 氨可生产多种氮肥,如尿素、硫酸铵、铵、碳酸氢铵等;还可生产多种复合肥,如磷铵复合肥等。

氨也是重要的工业原料。基本化学工业中的、纯碱及各种含氮无机盐; 有机工业各种中间体,制药中磺胺药物,高分子中聚纤维、氨基塑料、丁腈橡胶、冷却剂等。

国防工业中三硝基甲苯、油、硝化纤维等 (2合成氨工业发展简介

1784年,有学者证明氨是由氮和氢组成的。19世纪末,在热力学、动力学和催化剂等领域取得进展后,对合成氨反应的研究有了新的进展。1901年法国物理化学家吕·查得利提出氨合成的条件是高温、高压,并有适当催化剂存在。 1909年,德国人哈伯以锇为催化剂在17~20MPa和500~600℃温度下进行了合成氨研究,得到6%的氨。1910年成功地建立了能生产80gh-1氨的试验装置。

1911年米塔希研究成功以铁为活性组分的合成催化剂,铁基催化剂活性好、比锇催化剂价廉、易得。

合成氨的生产需要高纯氢气和氮气。氢气的主要来源有:气态烃类转化、固体燃料气化和重质烃类转化。

(3)合成氨的原则流程 合成氨生产的原则流程如图示。

1

2. 氨合成的热力学基础

从化学工艺的角度看其核心是反应过程工艺条件的确定,而确定反应的最佳工艺条件,需先从事反应热力学和动力学的研究。

(1氨合成反应与反应热

氢气和氮气合成氨是放热,体积缩小的可逆反应,反应式如下: 0.5N2+1.5H2==NH3 ΔHӨ298=-46.22 kJ·mol-1 其反应热不仅与温度有关,还与压力和组成有关。

(2)氨合成反应的平衡常数

应用化学平衡移动原理可知,低温、高压操作有利于氨的生成。但是温度和压力对合成氨的平衡产生影响的程度,需通过反应的化学平衡研究确定。其平衡常数为:

K f

fNH3f0.5N2•f1.5H2NH0.5N23•1.5H2•pNH3p0.5N2•p1.5H2K•Kp式中, p,pi—分别为总压和各组分平衡分压; yi—平衡组分的摩尔分数。

f,γ分别为各平衡组分的逸度和逸度系数.

2

(3)影响平衡时氨浓度的因素

在氨的合成应中,设P为总压,y、yN2、yH2、yi分别代表NH3、N2、H2、惰气的摩尔分数,则

原始氢氮比: RyN2 所以

yN2yH2yNH3yi1yH2yN21yyi1RyH21yyiyH2RR(1yyi)yH2故: 1R

在0.5N2+1.5H2=NH3反应达到平衡时:

由此可分析影响平衡氨含量的诸因素:

a.压力和温度的影响 温度越低,压力越高,平衡常数Kp越大,平衡氨含量越高。

KppNH3pp0.5N21.5H21yNH30.51.5pyN2yH2yR1.5pKp2(1yyi)(1R)23

b.氢氮比的影响 当温度、压力及惰性组分含量一定时,使yNH3为最大的条件为

若不考虑R对Kp的影响,解得R=3时,yNH3为最大值;高压下,气体偏离理想状态,Kp将随R而变,所以具有最大yNH3时的R略小于3,约在2.68~2.90之间。

c.惰性气体的影响 惰性组分的存在,降低了氢、氮气的有效分压,会使平衡氨含量降低。 3 . 氨合成动力学

(1)氨合成催化剂

以铁为主的催化剂(铁系催化剂)有催化活性高、寿命长、活性温度范围大、价廉易得等特点,广泛地被国内外合成氨厂家采用。

催化剂的活性成分是金属铁,而不是铁氧化物。使用前用氢氮混合气对催化剂还原,使铁氧化物还原为具有较高活性的a型纯铁。还原反应方程式为:

FeO·Fe2O3+4H2==3Fe+4H2O

A12O3在催化剂中能起到保持原结构骨架作用,从而防止活性铁的微晶长大,增加了催化剂的表面积,提高了活性。

CaO起助熔剂作用。

K2O的加入可促使催化剂的金属电子逸出功降低。

MgO除具有与Al2O3相同作用外,其主要作用是抗硫化物中毒的能力,从而延长催化剂的使用寿命。

少量CO、CO2、H2O等含氧杂质的存在将使铁被氧化,而失去活性。但当氧化性物质清除后,活性仍可恢复,故称之为暂时中毒。硫、磷、砷等杂质引起的中毒是不可恢复的,称作永久性中毒。

(2)氨合成反应动力学过程

氨合成为气固相催化反应,它的宏观动力学过程包括以下几个步骤。 a.混合气体向催化剂表面扩散(外,内扩散过程);

b.氢,氮气在催化剂表面被吸附,吸附的氮和氢发生反应, 生成的氨从催化剂表面解吸(表面反应过程);

4

c. 氨从催化剂表面向气体主流体扩散(内,外扩散过程) 氮、氢气在催化剂表面反应过程的机理,可表示为: N2(g)+Cate —→2N(Cate) H2(g)+Cate —→2H(Cate) N(Cate) + H(Cate) —→NH(Cate) NH(Cate) + H(Cate) —→NH2(Cate) NH2(Cate) + H(Cate) —→NH3(Cate) NH3(Cate)—→NH3(g) + (Cate)

实验结果证明,N2活性吸附是最慢的一步,即为表面反应过程的控制步骤。 对整个气固相催化反应过程,是表面反应控制还是扩散控制,取决于实际操作条件。低温时可能是动力学控制,高温时可能是内扩散控制;

大颗粒的催化剂内扩散路径长,小颗粒的路径短,所以在同样温度下大颗粒可能是内扩散控制,小颗粒可能是化学动力学控制。

当内扩散控制时,动力学方程为 rNH3=kP

式中rNH3为反应速率,k为扩散系数,p为反应物的总压。 当化学动力学控制时,在接*衡时: 式中: rNH3——氨合成反应的净速率: k1,k2——正、逆反应速率常数; pN2, pH2, pNH3——N2, H2, NH3的分压. 4 . 氨的合成与分离

(1)氨合成工艺条件的优化

合成工艺参数的选择除了考虑平衡氨含量外,还要综合考虑反应速度、催化剂特性及系统的生产能力、原料和能量消耗等。

压力 提高压力利于提高氨的平衡浓度,也利于总反应速率的增加。高压法动力消耗大,对设备材料和加工制造要求高。

5

30MPa左右是氨合成的适宜压力。从节省能源的观点出发,合成氨的压强应为15~20 MPa的压力。

温度 温度过高,会使催化剂过早失活。塔内温度应维持在催化剂的活性温度范围(400~520℃)内。

氨的合成反应存在一个使反应速度最大的温度,即最适宜反应温度,它除与催化剂活性有关外,还取决于反应气体组成和压力。最适宜反应温度与平衡反应温度之间存在确定的关系。

随着反应的进行,温度逐渐升高,当接近最适宜温度后,再采取冷却措施。 空间速度 空间速度指单位时间内通过单位体积催化剂的气体量(标准状态下的体积)。单位h-1,简称空速。

空速越大,反应时间越短,转化率越小,出塔气中氨含量降低。增大空速,催化剂床层中平衡氨浓度与混合气体中实际氨含量的差值增大,即推动力增大,反应速率增加;同时,增大空速混合气体处理量提高、生产能力增大。 氢氮比 动力学指出,氮的活性吸附是控制阶段,适当增加原料气中氮含量利于提高反应速率。为达到高的出口氨浓度、生产稳定的目的,循环气氢氮比略低于3(取2.8--2.9),新鲜原料气中的氢氮比取3:1。

惰性气体含量 惰性气体在新鲜原料气中一般很低,只是在循环过程中逐渐积累增多,使平衡氨含量下降、反应速度降低。生产中采取放掉一部分循环气的办法。放掉的气体称为驰放气。另行处理以回收氨和其它有用的气体。理论上是惰性气体越少越好,但实际上这是不现实的。要确定一个合理的惰性气体含量范围,还需大量计算。

以增产为主要目标,惰气含量,约为 10%—14%,若以降低原料成本为主,约为 16%~20%。

催化剂的粒径 催化剂的粒径也必须优化,优化过程涉及的因素很多且难以定量描述,所以优化条件只能通过实验来确定。在反应初期粒径小,反应后期粒径大。

(2)氨的分离

除了在需要氨水的地方,要用水吸收法来得到一些浓氨水外,一般都用冷凝法来分离氨。冷却分离过程是一个能耗较大的过程,较高温度时可用水冷,冷至较低温度一般用氨冷。就是用液氨作冷源,经过较复杂的冷冻流程将工艺气中的氨冷凝分离出来。分离氨之后的气体含有少量氨,同时还含有H2,要送循环系统再入合成塔循环反应。为了维持系统浓度稳定,惰性气体浓度不至累积过高,只有少量气体被引出作进一步处理。现在一般都要将里面所含H2分离出来循环利用,不再是简单地用作燃料。

6

液氨冷冻系统的传热温差一般都较小,所以流程复杂。这是热力学上功的损失因素所决定了的。

进合成氨塔气体中的氨由循环气带入,其数量决定于氨分离的条件。温度越低,分离效果越好。合理的氨含量应由增产与能耗之间的经济效益来定。在30 MPa左右,进口氨含量控制在 3.2%~3.8%;15 MPa时为 2.8%~3%。

(3)合成塔

合成塔必须保证原料气在最佳条件下进行反应。

氨合成是在高温、高压下进行,氢、氮对碳钢有明显的腐蚀作用。将塔设计成外筒和内件两部分。外筒一般做成圆筒形,可用普通低合金钢或优质碳钢制造,气体的进出口设在塔的上、下两端顶盖上。外筒只承受高压而不承受高温。 塔内件由热交换器、分气盒和催化剂筐三部分构成。热交换器供进入气体与反应后气体换热;分气盒起分气和集气作用;催化剂筐内放置催化剂、冷却管、电热器和测温仪器。冷却管的作用迅速移去反应热。

按从催化剂床层移热的方式不同,合成塔分连续换热式、多段间接换热式和多段冷激式三种。

(4) 合成分离循环流程

目前工业上使用的氨合成流程很多。合成氨厂广泛采用两级分氨流程。下图为常见的合成流程。

7

5 . 原料气的生产与净化

(1)生产原料气的原料

合成氨的生产需要高纯氢气和氮气。 氮气用最丰富而廉价的空气来制取。

氢气的主要来源有:气态烃类转化、固体燃料气化和重质烃类转化。其中以天然气为原料的气态烃类转化过程经济效益最高。其在高温下与水蒸汽的作用,制取粗原料气,都可用下式:

CnHm+nH2O(g)=nCO+(n+m/2)H2 或 C+H2O=CO+H2 原料气的生产步骤:

一、造气 原料与空气、水反应生成N2,H2,CO 二、变换 CO与水反应生成H2,实现氢氮比R=3

(2) 以煤焦为原料的造气过程及其优化

把煤或焦炭中的可燃物质转变为H2、CO和CO2,这一过程叫做固体燃料气化,简称造气。气化所得的气体统称煤气,进行气化的设备叫煤气发生炉。

8

采用间歇法造气时,空气和蒸汽交替通入煤气发生炉。通入空气的过程称为吹风,制得的煤气叫空气煤气;通入水蒸气的过程称为制气,制得的煤气叫水煤气;空气煤气与水煤气的混合物称为半水煤气。

固体燃料气化法的化学计量方程式为:

吹风 2C+O2+3.76N2 = 2CO+3.76N2+248.7 kJ·mol-1 制气 5C+5H2O(g)= 5CO+5H2-590.5 kJ·mol-1 总反应 7C+O2+3.76 N2+5H2O(g)=7CO+3.76 N2+5H2 -341.8 kJ·mol-1 工业上采用间歇操作送风发热法,即交替进行吹风和制气。

a.空气吹风 空气从造气炉底部吹入,送风发热,提高炉温,吹风后的气

体去废热锅炉回收热量后放空;

b.上吹制气 蒸汽和空气从炉底吹入制半水煤气,半水煤气通过废热锅炉回收热量,除尘、洗涤后送入气柜。

c.下吹制气 上吹制气后,炉底温度下降,炉顶温度尚高,使蒸汽和空气从炉顶吹入与碳反应,生成半水煤气从炉底导出,经除尘、洗涤, 送入气柜; d.二次上吹 下吹后,炉底充满水煤气,此时吹入空气升高炉温,可能引起爆炸。再从炉底吹入蒸汽将炉底煤气排净,为吹风作准备。二次上吹虽可制气,但炉温低,气质差,二次上吹时间尽可能短;

e.空气吹净 空气从炉底吹入,将残存的半水煤气吹出并送入气柜,同时制得的吹风气(空气煤气)与b,c,d阶段制得的半水煤气在气柜中混合。

缺点:气化设备简单、便于控制,能耗大,约有一半原料被当作燃料烧掉,生产能力低,产生三废(煤渣、含氰废水、含硫废气等)较多。

9

(3)变换

1.化学反应与平衡转化率

用煤或烃生产出的气体都含有相当量的CO,如固体燃料制得的半水煤气含28%-31%,气体烃蒸汽转化法含15%~18%,重油气化法含46%左右。CO

10

对氨合成催化剂有毒害,必须除去。变换利用水蒸气把CO变换为H2和易清除的CO2,同时又制得了所需的原料气H2。其反应为:

CO + H2O(g)= CO2 + H2 ΔH0= -41 kJ·mol-1

温度、反应物组成及催化剂性能都是影响平衡转化率的因素。 6.工艺条件的优化 (1)催化剂

低温变换催化剂一般用铜催化剂。其主要成份为:CuO 15.3-31.2%, ZnO 32-62.2%, Al2O3 0-40.5%少量Cr2O3。活性成份为单质铜,活性温度范围为180-250℃,使用前要用氢气还原。

中温变换催化剂一般用铁铬催化剂,其主要成份为:Fe2O3 80-90%; Cr2O3 7-11%; 少量 K2O, MgO, 及Al2O3,起活性的成份是Fe3O4活性温度范围为350-450℃,使用前也要用氢气还原。

(2)原料气的组成

为了提高CO的转化率,采用水蒸气过量的方法实现。 (3)反应温度

变换反应是可逆放热反应,存在反应最佳温度。从热力学上看,温度上升,平衡常数下降,转化率降低;但从动力学因素看,温度升高,反应速度增加。使变换率最大的温度为最佳温度,从热力学和动力学关系求极值可得出。反应初期,转化率低,最佳温度高,采用中温变换,反应后期,转化率高,最佳温度低,采用低温变换。

(4)反应压力

压力对平衡没有影响,但增大压力可加快反应速度,减少催化剂用量和反应设备体积,并可降低能耗。中型厂用1.5~3.0MPa加压变换,小型厂0.2~0.8 MPa加压变换。加压变换的缺点是设备腐蚀严重。

7.生产工艺流程(中变低变串联的流程)

中变催化剂的铁铬或铁镁催化剂反应温度高,反应速度大,有较强的耐硫性,价廉而寿命长。低温的铜系催化剂则正相反。

为了取长补短,工业上采用中变低变串联的流程,如图所示。

11

压力对平衡无影响。变换是在常压下进行的. 增大压力可加快反应速度,减少催化剂用量和反应设备体积,并可降低能耗。

小型厂0.2~0.8 MPa加压变换。加压变换的缺点是设备腐蚀严重。

(1)原料气的净化

脱硫,脱碳,变换, 气体的精制

①脱硫 主要是H2S,其次是CS2,COS,RSH等有机硫。其含量取决于原料的含硫量及加工方法. 以煤为原料,原料气中H2S含量一般为2~3g·m-3,有的高达20~30g·m-3。 H2S对设备和管道有腐蚀作用,使变换及合成系统的催化剂中毒,还使铜洗系统的低价铜生成硫化亚铜沉淀,增加铜耗。

工业脱硫方法很多,分为干法和湿法两种。前者是用固体脱硫剂(如氧化锌、活性炭、分子筛等)将气体中的硫化物除掉;后者用碱性物质或氧化剂的水溶液即脱硫剂(如氨水法、碳酸盐法、乙醇胺法、蒽醌二磺酸钠法及砷碱法等)吸收气体中的硫化物。

干法脱硫优点是既能脱无机硫,又能脱有机硫,可把硫脱至极微量。缺点是脱硫剂不能再生,故只能周期性操作,不适于脱除大量硫化物。

湿法采用液体脱硫,便于再生并能回收硫,易于构成连续脱硫循环系统,可用较小的设备脱大量硫化物。缺点是对有机硫脱除能力差,净化度不如干法高。 目前通用的是湿法中的改良ADA法,也称之为ADA-钒酸盐法(或改良ADA法)。

反应原理:

(1)脱硫吸收塔中的反应:

12

Na2CO3+H2S→NaHS+NaHCO3

2NaHS+4NaVO3+H2O→Na2V4O9+4NaOH+2S Na2V4O9+2ADA(氧化态)+2NaOH+H2O→4NaVO3+2ADA(还原态)

(2)再生塔中反应:

2ADA(还原态)+O2→2ADA(氧化态)+H2O

②脱碳 变换气中含有大量的CO2(15%一35%),对原料气的精制及氨合成不利。

脱除CO2的方法很多,工业上常用的是溶液吸收法,分为物理吸收和化学吸收两种。

物理吸收是利用CO2能溶于水和有机溶剂的特点。常用的有加压水洗、低温甲醇洗涤等。如在3MPa、-30— -70℃下,甲醇洗涤气体后气体中的 CO2可以从 33%降到10μg·g-1,脱碳十分彻底。

化学吸收是用氨水、有机胺或碳酸钾的碱性溶液为吸收剂,利用CO2能与溶液中的碱性物质进行化学反应而将其吸收。大中型厂多采用改良热碱法,此法以K2CO3水溶液为吸收液,并添加少量活化剂如氨基乙酸或乙二醇胺,缓蚀剂如V2O5等。吸收解吸反应如下:

K2CO3 + CO2 + H2O = 2KHCO3

当吸收液中添加氨基乙酸,吸收压强2~3MPa、温度85~100℃时,气体中的 CO2可从 20~28%降至 0.2%~0.4%;解吸压强为10~30kPa,温度105~110℃,用热碱脱除CO2时,也脱除了微量的H2S。

③气体的精制 气体的精制就是将少量的CO、CO2进一步脱除,常用的有铜洗法和甲烷化法。

甲烷化法 是把 CO、CO2转化为对氨合成无害的 CH4,主要反应是 CO + 3H2=CH4 + H2O CO2 + 4H2=CH4 + 2H2O

甲烷化法镍为主的催化剂作用下,在 280~380℃及压强 0.6~3MPa下进行甲烷化反应。此法将气体中碳化物总量降低到10μg·g-1。

联合生产碳酸氢铵法(以下具体介绍)

13

二.合成氨——碳酸氢铵联合生产之碳化工序

碳酸氢铵

1. 性质和用途

碳酸氢铵又称碳铵~重碳酸铵~酸式碳酸铵,碳酸氢铵是一种碳酸盐,分子式为NH4HCO3 ,相对分子质量79.06 ,碳酸氢铵系单斜晶体,密度1.58,在加压下所测的熔点为106℃.在空气中易分解,但分解速度随结晶体所含水分的不同而异,随温度升高而迅速上升.见下表:

碳酸氢铵在不同温度下的蒸汽压 / kPa 温度 (℃) 20.0 30.0 40.0 50.0

,化学式为NH4HCO3,相对分子质量79,含氮17%左右。生产碳铵的原料是氨、二氧化碳和水,反应式为: NH3+H2O→NH3*H2O+热量 NH4OH+CO2→NH4HCO3+热量

碳酸氢铵是一种无色或浅色化合物,呈粒状,板状或柱状结晶,比重1.57,容重0.75,较硫酸铵(0.86)轻,略重于粒状尿素(0.66)易溶于水,0℃时溶解度为11.3%;20℃时为21%;40℃时为35%。

从碳酸氢铵的化学式不难看出,碳酸氢铵其中有N(氮)元素。所以可以把碳酸氢铵当作一种化肥(氮肥)使用。它的俗名有“碳酸氢氨”、“碳铵”、“碳氨”等。纯净的碳酸氢铵氮元素的质量分数约为17.72%.

碳酸氢铵的化学性质不很稳定。碳酸氢铵受热易分解,生成氨气(NH3)、水(H2O)、二氧化碳(CO2)。其中氨气有特殊的氨臭味,所以在长期堆放碳酸氢铵化肥的地方会有刺激性气味。

因为碳酸氢铵是一种碳酸盐,所以一定不能和酸一起放置,因为酸会和碳酸氢铵反应生成二氧化碳,使碳酸氢铵变质。但是也有农村利用碳酸氢铵能和酸反应这一性

14

干燥碳酸氢铵 (含水0.1%) 0.600 1.947 5.800 16.332 湿碳酸氢铵 (含水2.44%) 4.160 11.332 25.518 .635

质,将碳酸氢铵放在蔬菜大棚内,将大棚密封,并将碳酸氢铵置于高处,加入稀盐酸。这时,碳酸氢铵会和盐酸反应,生成氯化铵(NH4Cl)、水(H2O)和二氧化碳(CO2)。二氧化碳可促进植物光合作用,增加蔬菜产量,而生成的氯化铵也可再次作为肥料使用。

碳酸氢铵的化学式中有铵根离子(NH4+,即带1单位正电荷),是一种铵盐,而铵盐不可以和碱供放一处,所以碳酸氢铵切忌和NaOH(俗名火碱、烧碱、苛性钠,化学名氢氧化钠)或Ca(OH)2 (俗名熟石灰,化学名氢氧化钙)放在一起。因为铵盐和碱共热会生成氨气使化肥失效。

碳铵在水中呈碱性反应。易挥发,有强烈的刺激性臭味。10~20℃时,不易分解,30℃时开始大量分解。我国多数地区主要作物的施肥季节在5~10月,其间平均温度在20C以上,恰值碳铵开始较多分解的转折点,施用时必须采取各种防挥发措施。

碳铵怕”热”也怕”湿”,因生产时不能按常法加热干燥,故碳铵产品常有吸湿水,引起碳铵分子潮解,结果使密封包装下的碳铵结块,敞开时则加速挥发。

碳铵的优点主要表现在农化性质上。碳铵是无(硫)酸根氮肥,其三个组分都是作物的养分,不含有害的中间产物和最终分解产物,长期施用不影响土质,是最安全的氮肥品种之一。

碳铵的另一个特点是其铵离子更易被土粒吸持,故当其施入土后不易随水下渗流失,淋失量仅及其他氮肥的三分之一到十分之一(表2-2)。因此,只要碳铵能较完全地接触土壤,被土粒充分吸持,施用后的挥发并不比其他氮肥高。有些条件下,如在石灰性土壤上,深施后还可比其他氮肥减少挥发损失。

施用:碳铵适用于基肥,也可用作追肥,但都要深施。常用的有以下几种方法:

①不离土不离水和先肥土、后肥苗的施肥原则即把碳铵深施入土,使其不离水土,被土粒吸持并不断对作物供肥。深施的方法很多,如作基肥的铺底深施,全层深施,分层深施;作追肥的沟施和穴施等。其中以结合耕耙作业将碳铵作基肥深施,较方便而功效高,肥效稳定。对旱作物如小麦、玉米作追肥深施,效果也较好,但须注意适宜用量,防止烧苗,应结合灌水,才能充分发挥其肥效。

②避免高温季节和高温时期施用的原则碳铵尽量在气温小于20℃的季节施用,一天中则尽量在早、晚气温较低时施用,均可明显减少施用时的分解挥发,提高肥效。提倡碳铵与其他氮肥品种搭配施用,如将碳铵作基肥,用于低温季节,尿素、硫铵等作追肥,用于高温季节。随着我国化肥工业的发展,碳铵在我国农用氮素中的比例将可能逐渐降低,被其他高浓度稳定的氮肥品种所替代,但碳铵仍将在相当一段时间内作为我国的一个重要氮肥品种,不能忽视。

15

联合制碱法

(1)NH3+H2O+CO2=NH4HCO3

(2) NH4HCO3+NaCl=NH4Cl+NaHCO3↓

(3)2NaHCO3(加热)=Na2CO3+H2O+CO2↑

即:①NaCl(饱和)+NH3+H2O+CO2=NH4Cl+NaHCO3↓ ②2NaHCO3=加热=Na2CO3+H2O+CO2↑

氨气与水和二氧化碳反应生成一分子的碳酸氢铵,这是第一步。第二步是:碳酸氢铵与氯化钠反应生成一分子的氯化铵和碳酸氢钠沉淀,碳酸氢钠之所以沉淀是因为它的溶解度较小。

根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,在 278K ~ 283K(5 ℃~ 10 ℃ ) 时,向母液中加入食盐细粉,而使 NH4Cl 单独结晶析出供做氮肥。

此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2 ,革除了 CaCO3 制 CO2 这一工序。

碳酸钠用途非常广泛。虽然人们曾先后从盐碱地和盐湖中获得碳酸钠,但仍不能满足工业生产的需要。

1862年,比利时人索尔维(Ernest Solvay 1838—1922)发明了以食盐、氨、二氧化碳为原料制取碳酸钠的“索尔维制碱法”(又称氨碱法)。此后,英、法、德、美等国相继建立了大规模生产纯碱的工厂,并组织了索尔维公会,对会员以外的国家实行技术封锁。

第一次世界大战期间,欧亚交通梗塞。由于我国所需纯碱都是从英国进口的,一时间,纯碱非常缺乏,一些以纯碱为原料的民族工业难以生存。1917年,爱国实业家范旭东在天津塘沽创办了永利碱业公司,决心打破洋人的垄断,生产出中国的纯碱。他聘请正在美国留学的侯德榜先生出任总工程师。

1920年,侯德榜先生毅然回国任职。他全身心地投入制碱工艺和设备的改进上,终于摸索出了索尔维法的各项生产技术。1924年8月,塘沽碱厂正式投产。1926年,中国生产的“红三角”牌纯碱在美国费城的万国博览会上获得金质奖章。产品不但畅销国内,而且远销日本和东南亚。

针对索尔维法生产纯碱时食盐利用率低,制碱成本高,废液、废渣污染环境和难以处理等不足,侯德榜先生经过上千次试验,在1943年研究成功了联合制碱法。这个新工艺是把氨厂和碱厂建在一起,联合生产。由氨厂提供碱厂需要的氨和二氧化碳。母液里的氯化铵用加入食盐的办法使它结晶出来,作为化工产品或化肥。食盐溶液又可以循环使用。为了实现这一设计,在1941一1943年抗日战争的艰苦环境中,在侯德榜的严格

16

指导下,经过了500多次循环试验,分析了2000多个样品后,才把具体工艺流程定下来,这个新工艺使食盐利用率从70%一下子提高到96%,也使原来无用的氯化钙转化成化肥氯化铵,解决了氯化钙占地毁田、污染环境的难题。这方法把世界制碱技术水平推向了一个新高度,赢得了国际化工界的极高评价。1943年,中国化学工程师学会一致同意将这一新的联合制碱法命名为“侯氏联合制碱法”。所谓“联合制碱法”中的“联合”,指该法将合成氨工业与制碱工业组合在一起,利用了生产氨时的副产品CO2,革除了用石灰石分解来生产,简化了生产设备。此外,联合制碱法也避免了生产氨碱法中用处不大的副产物氯化钙,而用可作化肥的氯化铵来回收,提高了食盐利用率,缩短了生产流程,减少了对环境的污染,降低了纯碱的成本。联合制碱法很快为世界所采用。

侯氏制碱法的原理是依据离子反应发生的原理进行的,离子反应会向着离子浓度减小的方向进行。也就是很多初中高中教材所说的复分解反应应有沉淀,气体和难电离的物质生成。他要制纯碱(Na2CO3),就利用NaHCO3在溶液中溶液中溶解度较小,所以先制得NaHCO3。再利用碳酸氢钠不稳定性分解得到纯碱。要制得碳酸氢钠就要有大量钠离子和碳酸氢根离子,所以就在饱和食盐水中通入氨气,形成饱和氨盐水,再向其中通入二氧化碳,在溶液中就有了大量的钠离子,铵根离子,氯离子和碳酸氢根离子,这其中NaHCO3溶解度最小,所以析出,其余产品处理后可作肥料或循环使用。

生产工艺:

17

18

19

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务