TreeReductions
DepartmentofElectricalEngineeringandComputerScienceTheUniversityofMichigan,AnnArbor,MI48109lding,blaauw,mazum@eecs.umich.eduLiDing,DavidBlaauw,andPinakiMazumderABSTRACTThispaperdescribesafastmethodtoestimatecrosstalknoiseinthepresenceofmultipleaggressornetsforuseinphysicaldesignautomationtools.Sincenoiseestimationisoftenpartoftheinner-loopofoptimizationalgorithms,veryefficientclosed-formsolu-tionsareneeded.Previousapproacheshavetypicallyusedsimplelumped3-4nodecircuittemplates.Oneaggressornetismodeledatatimeassumingthatthecouplingcapacitancestoallquietag-gressornetsaregrounded.Theyalsomodeltheloadfrominter-connectbranchesasalumpedcapacitoranduseadominantpoleapproximationtosolvethetemplatecircuit.Whiletheseapproxi-mationsallowforveryfastanalysis,theyresultinsignificantun-derestimationofthenoise.Inthispaper,weproposeanewandmorecomprehensivefastnoiseestimationmodel.Weusea6nodetemplatecircuitandproposeanovelreductiontechniqueformod-elingquietaggressornetsbasedontheconceptofcouplingpointadmittance.Wealsoproposeareductionmethodtoreplacetreebrancheswitheffectivecapacitorswhichmodelstheeffectofresis-tiveshielding.Finally,weproposeanewdoublepoleapproachtosolvethetemplatecircuit.Wetestedtheproposedmethodonnoise-proneinterconnectsfromanindustrialhighperformanceprocessor.Ourresultsshowaworst-caseerrorof7.8%andanaverageerrorof2.7%,whileallowingforveryfastanalysis.
1.INTRODUCTIONCrosstalknoisebetweensignalwireshasbecomeamajorsourceoffailuresinmodernhigh-performanceVLSIsystems[1]-[2].Duetotheaggressiveinterconnectscalinginthelateraldimensionswithrelativelyunchangedverticaldimensions,thecouplingcapacitanceamongadjacentwirescanbesignificantlylargerthanwiregroundcapacitance.Insuchstronglycoupledsystems,thestateofawirestronglydependsonthestatesofitsneighboringwires.Theswitch-ingofafirstnet,referredtoastheaggressornet,mayaffectthestateofasecondnearbynet,referredtoasthevictimnet.
itancesofabranchatthebranchingpointtosimplifythecircuit.Thisresultsinanunderestimationofcrosstalknoise.Finally,pre-viousmethodsuse3-4nodetemplatecircuitswhicharesolvedus-ingadominantpoleapproximation.Wewillshowthattheinabilityofthetemplatecircuittomodeltheresistanceoftheswitchingag-gressorandthedominantpoleapproximationfurthercompromisetheaccuracyoftheexistingfastnoiseanalysismethods.
Inthispaper,wepresentanefficientcrosstalknoiseestimationframeworkwhichmaintainstheefficiencyofpastapproaches,butsignificantlyimprovesontheiraccuracy.Weproposenovelquietaggressornetandtreebranchreductiontechniquewhichmodelsthemwitheffectiveloadcapacitances.Formulasarederivedtocal-culatethevaluesoftheseeffectivecapacitancesusingcoupling-pointandbranching-pointadmittancetogetherwithapproximatewaveformsatthecouplingandbranchingpoints.Inordertomodeltheresistanceoftheswitchingaggressornet,weusea6nodetem-platecircuit,whichsignificantlyenhancestheaccuracyofthenoiseestimation.Tosolvethismorecomplextemplatecircuit,wepro-poseanewdoublepolemethodandconfirmitsaccuracycomparedwithSPICEsimulation.Experimentalresultsonindustrialnetsdemonstratethattheproposedmethodssignificantlyenhancetheaccuracyofthenoiseestimationandeliminatesthetendencyofpriormethodstounderestimatethenoiselevel.Atthesametime,theproposedmethodmaintainstheefficiencyofpreviousmethodsandislinearinruntimewiththenumberofaggressornets.
Therestofthepaperisorganizedasfollows.Section2explainstheoverallframeworkoftheproposednoiseestimationmethodol-ogy.InSection3,weintroducequietaggressornetreductionandtreebranchreductiontechniquesbasedonpointadmittancematch-ing.ThereducedcircuitisthenanalyzedinSection4,whereweproposedthedoublepolemodelforefficientyetaccuratenoisecal-culation.AndinSection5,wepresentresultsofproposedmethod-ologyonindustrialcircuits.
2.METHODOLOGY
Thebasicideaoftheproposedmethodisfirsttoreducealargecrosstalknetworkintoasimpletemplatecircuit.Thetemplatecir-cuitisthensolvedanalytically.TheflowchartofthereductionschemeisillustratedinFigure1.First,weapplythetreereductionoperationoneachaggressornet.Second,weapplyquietaggressornetreductionoperationoneachoftheN-1non-switchingaggres-sors.Third,thebranchesinthevictimnetarereducedinasimilarmannerasthoseaggressornetbranches.Attheendofthisstep,weobtainasimplecircuitwithonlytwomainwireseachcorre-spondingtothevictimnetandtheactiveaggressornet.Finally,resistanceandcapacitancevaluesofthereducedtemplatecircuit,showninFigure2areextracted.
ThetemplatecircuitforcrosstalknoisemodelingshowninFig-ure2isanextensiontothe2-πmodelproposedin[10],wherethevictimnetismodeledusingthe2-π(3-node)circuitwhiletheag-gressornetissimplifiedasasaturatedrampinputatnode1inFig-ure2.Inthispaper,wemodelbothvictimnetandaggressornetas2-πcircuitssothatthelocationofthecapacitivecouplingcanbecorrectlymodeledandoverallmodelingaccuracyismuchim-proved.Wehaveproposedasimpleyetaccuratedoublepolemodeltosolvethecrosstalknoiseestimationprobleminthereducedtem-platecircuit.Notethatthistemplatecircuit,however,isonlysuit-ableforshorttomediuminterconnectsbecauseitusesonlyonelumpedcouplingcapacitor.Morecomplextemplatecircuitswithlargernumberofcouplingcapacitorsshouldbeemployedforverylongwires.Nevertheless,thereductionmethodsproposedinthispaperaregeneric,andtheyarenotrestrictedtothespecificcircuittopologyshowninFigure2.
Aggressor NetTree ReductionQuiet Aggressor Net ReductionRead Netlist
Solve Template Victim Net Circuit
Tree ReductionModel Parameter ExtractionFigure1:Flowchartoftreeandquiteaggressornetreduction.
inRARAL1RARCALCAMCAR
CXRVRVL2RVRoutCVLCVMCVR
Figure2:Singleaggressorcrosstalknoisemodel.
3.REDUCTIONTECHNIQUES
Eachreductiontechniquedescribedinthissectionconsistsoftwophasesinsequence.Inthefirstphase,aquietaggressornetortreebranchismodeledusingsimplereducedcircuitsbymatchingthelowerorderTaylorseriesexpansioncoefficientsoftheadmit-tanceYsatthecouplingpointorbranchingpointofthecircuit.Inthesecondphase,aneffectivecapacitanceisderivedtoreplacethosereducedcircuitstofurtherimprovetheefficiency.
3.1Overviewofpointadmittance
LetYsdenotesthepointadmittanceofageneralcircuit.ItcanbeapproximatedbythesumoflowerorderTaylorseriesexpansionterms
Ys
y0
y1s
2
y2sy3s3
Os4
(1)
whereyn(nthefirsttermy0is12zero3)iswhenthenthere-thexpansionisnodcconductingcoefficient.pathNotefromthattheobservingpoint0totheground.
Thecoupling-pointadmittanceorbranching-pointadmittanceiscomputedstartingfromtheleafnodesofaRCtreethengoingbacktothecouplingorbranchingpoint.Thisissimilartotheapproachesusedinsolvingthedriving-pointadmittanceproblemforgatedelaycalculation[13].Threebasicrulesareusedinthealgorithmtocalculatethelowerordercoefficients.Thoserulesarepresentedin(2)-(4)andareillustratedinFigure3.Rule1:serialresistance:
y0
py0
y1
2py1
y2
p2y2
p3ry21
y3
p2y32p3ry1y2
p4r2y31
(2)
wheretheparameterpisdefinedasp
11ry0.
Rule 1:
Y(s)rY*(s)Rule 2:
Y(s)cY*(s)Y1(s)Rule 3:
Y*(s)Y2(s)Figure3:Rulesforpointadmittanceexpansioncoefficients.
Rule2:serialcapacitance:
y0
0
y1
c
y2
c2y0
y3
c2y1cy20
(3)
Rule3:branchjoin:
y0
y10y20y1y11y21y2y12y22y3
y13
y23
(4)
whereyi0,yi1,yi2andyi3arethefirstfourTaylorseriesexpansioncoefficientsofthei-thbranch(i3canbeappliedformultipletimes12),whenrespectively.therearemoreNotethatthanRuletwojoiningbranches.
Itiseasytoobservethat1)thefirstfourtermsoftheadmit-tancey0,y1,y2,andy3arepreservedbyrepeatedapplicationofaboverules,and2)thetimecomplexitytoreduceasubtreeusingthisreductiontechniqueislinearwithrespecttothenumberofRCelementsinthenetlist.
3.2Quietaggressornetreduction
ConsidertheequivalentquietaggressornetshowninFigure4(a).WefirstreducetheaggressornettoasingleresistorRinFigure4(b)bymatchingtheAandasinglecapacitorCAasshownfirsttwoTay-lorseriesexpansioncoefficientsyonlyy0andy1oftheaggressornetatnodeA.Since0andy1appearattherightsideof(3),wecanhenceneglecthigherorderTaylorcoefficientsatnodeAtoachievethirdorderaccuracyatnodeV.ByapplyingbothRule1andRule3,itisstraightforwardtoobtaintheadmittanceatnodeAas
Y1
As
2CAL
CAMCARs
Os2
RARAL
(5)
Therefore,thedevicesinthesimplifiedcircuitshowninFigure4(b)
havethefollowingvalues
RA
RA
RAL
(6)
CR2A
A
dtCdVVt
X
dt
(8)
AssumethevoltagewaveformofthevictimnetisanormalizedrampinputVVtttr,0ttr.Wehaveobtainedthefollowingformulafortheeffectivecapacitance
CReff
ACX
1
(a)witharisetimeoftr,theeffectivecapacitancecanbederivedas
AARB(b)A(c)C1C2CeffFigure5:Treereductionforcrosstalkestimation.(a)GeneralRCtreebranch.(b)Reduced-orderπ-modelforthetree.(c)Treeeffectivecapacitance.
considerhereareactuallybranchesthatconnectedtothe‘main’wiresoftheaggressornetsorthevictimnet.Wemodelthosebranchesemployingsimilarapproachesasthoseusedin[13]and[14].FirstageneralRCtreestructureisreducedtoasimpleπ-modelasshowninFigure5(b)bymatchingthefirstthreemomentsofthetree.Theresultingmodelisthenfurtherreducedtoaneffec-tivecapacitance,showninFigure5(c),foragivensignalswitchingslopeatthenodeA.
Thedifferencebetweentheproposedmethodandthetechniquesforeffectivedrivingpointcapacitanceliesintheinterfacingoftheπ-typecircuitwithexternalwaveforms.Fordelaycalculation,theeffectivecapacitancetriestomatchtheaveragecapacitancefortheperiodfromstarttothetimewhenthevoltagereaches50%ofthesupplyvoltage.Forcrosstalknoiseestimation,however,wetrytomatchtheaveragecapacitanceofthebranchduringtheentiresignalswitchingperiod.
Sincethereisnodirectdcpathtothegroundincircuitbranches,wealwayshaveyeralRCtreeareobtained00.OncebyrepeatedlythefirstthreeapplyingmomentsRule1of,weagen-canconstructareducedπ-typecircuitwhichmatchesthosethreemo-ments.Thevaluesofthecapacitorsandtheresistorinthefigurearecalculatedas
Cy221
2
3
y1
y3
R
ydt
CdV1
At
dt
(11)
Assuminganormalizedsaturatedrampinputatthevictimnode
Ceff
C1
1
RC2
tr0tV
tr0
1e
CX
Cr
Reff
ARCAR
1
ttA
r
ttrtA
ttrtA
r
1
e
e
t
(15)
tr
(20)
0.3Region IRegion II)V( e0.2gDouble PoleatloV deSPICEzilamro0.1NDominant Pole000.20.4Time (ns)0.60.81.01.2Figure6:Comparisonofnoisewaveforms.
Now,insteadofusingasimplerampfunctionatnode1astheag-gressornetwaveform,weusetheabovemoreaccurateform.Usingdominantpoleapproximationonthevictimnet,wehaveobtainedthetime-domainnoisevoltageoutput,whichcanbedividedintothefollowingtworegions:1)RegionI(0ttr):
VI
ttout
X
ttA
ttrtA
tr
αe
e
e
ttV
e
ttrtV
β(22)
whereαtAtVteasilyobservedAandβtVtVtthatthenoiseA.
Itcanbevoltageincreasesmono-tonicallyinRegionIanditincreases,thendecreasesinRegionII.Therefore,themaximumnoiseBysolvingtheequationdVIIvoltagealwaysoccursinRegionII.
voltagereachesthepeak
outtdt0,weobtainthetimenoise
tpeak
tr
tVtA
1
trtV
(23)
e
WecomparethenoisewaveformsgeneratedbythedominantpoleandthedoublepolemodelswiththatobtainedusingSPICEsimulationinFigure6.Thefollowingcircuitparametersareas-sumed.Thedrivingresistancesoftheaggressorandthevictimare500Ωand1000Ω,respectively;thewireresistancesare100Ωeach;thegroundcapacitancesare50fFeachandthecouplingca-pacitanceis150fF;andtherisingslopeoftheinputsignalis200ps.Clearly,thewaveformobtainedusingthedoublepoleapproxima-tionismoreaccuratethanthatobtainedbythedominantpoleap-proximation.First,thenoisepeaktimeisveryclosetothecorrectvalue.Second,thederivativeofthevoltagewaveformiscontinuousthroughouttheentirerange,whichisimportantformanyoptimiza-tionengines.Andthird,thenoisevoltagematchesthesimulatedresultwellovertheentirewaveform.
Peaknoisevoltageisametrictodeterminewhetherthenoiseonasignalwireexceedsthestaticnoisemarginofthereceivers.How-ever,thedurationthatthesignalishigherthanreceiverstaticnoisemarginshouldalsobeconsideredtomeasuretheeffectofthenoiseonthereceiveroutput.Inliterature,thisisaccomplishedbyusingthenoisewidthmetric.Inthepresenceofmultipleaggressornets,however,thenoisewidthoftheglitchesgeneratedbyeachsingle
Table1:Experimentalresultsonnoisearea.Circuit#RCSPICE
2/21.490.1(1.3)
9/92.800.596(2.2)4/42.620.4(1.7)5/52.800.522(2.6)9/92.790.600(0.2)9/92.610.520(0.3)4/41.470.393(0.7)7/60.710.706(0.0)7/52.071.220(0.2)2/22.820.477(1.2)7/72.700.459(2.4)3/31.690.404(1.3)3/31.690.404(0.7)10/102.580.397(2.1)3/31.470.329(1.5)2/21.710.409(0.4)7/42.828.969(0.0)3/31.680.407(1.1)2/21.490.269(1.2)3/31.700.406(0.1)2/21.650.397(1.1)7/72.730.651(0.6)5/32.728.860(0.1)2/21.480.250(1.5)3/31.700.401(0.7)5/52.410.352(4.3)10/92.750.385(1.2)5/52.710.406(4.5)2/21.470.282(2.5)9/92.120.224
(1.0)
Ave128-
Table2:Experimentalresultsonpeaknoisevoltage.CircuitSimple(Err%)
0.8390.900(7.4)0.7930.782(1.4)0.7900.812(2.7)0.7860.796(1.3)0.7650.765(0.0)0.7720.731(5.4)0.70.772(1.0)0.7160.761(6.3)0.7130.727(2.1)0.7100.6(7.8)0.7040.717(1.8)0.6950.682(1.9)0.6930.682(1.5)0.6820.658(3.5)0.6860.702(2.3)0.6900.683(1.1)0.6860.693(1.0)0.6880.687(0.1)0.6850.684(0.2)0.6850.676(1.3)0.6840.682(0.4)0.6630.658(0.7)0.6620.714(7.7)0.6560.657(0.2)0.6560.0(2.5)0.6320.616(2.5)0.6320.585(7.4)0.6260.625(0.1)0.6260.639(2.0)0.6220.585(5.9)
Ave/Max11.7%/21.3%
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- stra.cn 版权所有 赣ICP备2024042791号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务